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$01 q' ABSTRACT 

This volume is a collection of speeches given at the 
"Review Conference concerning Space Flight and Guidance 
Theory" held between various divisions of the Marshall 
Space Flight Center on February 20, 1962. The conference 
had the following objectives: 

1. The significance of scientific disciplines in 
their contributions to the development of the space flight 
and guidance theory is to be shown. 

2. For three disciplines, an introduction into the 
theory and a description of the present state of development 
are to be given. These disciplines are: celestial mechanics, 
calculus of variations, and the area of exploitation of 
large-scale computers. 

3. The in-house and out-of-house (contracted) -efforts 
for furthering our present day knowledge of the involved 
disciplines are to be discussed. 1 

4. Results are to be presented that show the imple- 
mentation of the theoretical achievements in the guidance 
mechanics applied to the Saturn vehicle flights. 
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INTRODUCTION 

A Functional Perspect ive of Problems 
of Space F l i g h t  and Guidance Theory 

by 
Robert S i lbe r  

. 
The following ma te r i a l  i s  intended t o  present  a kind of summary of 

t he  e f f o r t s  now being expended i n  and under the  supervis ion of t he  Future 
P ro jec t s  Branch of the  Aerobal l i s t ics  Division i n  the  a rea  of Aerobal- 
l ist ics research,  with e spec ia l  emphasis on the  adapt ive guidance mode. 

One need have only a superficial  f a m i l i a r i t y  with the  concept of t he  
adapt ive  guidance mode t o  r e a l i z e  tha t  any inves t iga t ion  involving the  
app l i ca t ion  o r  extension of the  theory must necessar i ly  e n t a i l  almost 
every known d i s c i p l i n e  involved i n  the a e r o b a l l i s t i c s  f i e l d .  Of course,  
the  same could probably be s a i d  f o r  any guidance mode, s ince  guidance 
u l t ima te ly  determines the  t r a j e c t o r y  h i s t o r y  of a given f l i g h t .  Adap- 
t ive guidance, however, is  broader in  t h a t  i t  is conceptual ly  capable 
of a continuous redeterminat ion o f ,  i n  some sense,  a b e s t  t r a j e c t o r y  
h i s t o r y  as a func t ion  of (a)  s t a t e  var iab les ,  (b) performance parameters 
and (c) mission c r i t e r i a .  

Because of the  complexity of the inves t iga t ions  surrounding adap- 
t i v e  guidance, any p resen ta t ion  of the r e s u l t s  of these  inves t iga t ions ,  
i f  i t  i s  t o  be in t eg ra t ed ,  is i n  i t s e l f  a problem. Some thought has 
the re fo re  been devoted t o  the  formulation of a s t r u c t u r e  wi th in  which 
p a r t i c u l a r  r e s u l t s  assume a r e l a t i o n  t o  a t o t a l ,  r a t h e r  than appear 
a s  a c o l l e c t i o n  of seemingly d i s jo in t ed  and unrelated f a c t s .  

Such a s t r u c t u r e  i s  shown by Figure 1. This ou t l ine  should enable 
the  reader  t o  perceive the r o l e  of a p a r t i c u l a r  i nves t iga t ion  i n  the  
o v e r a l l  d iv i s ion  function. The diagram has two inputs ,  Missions and 
Aeroba l l i s t i c s  Area. These a r e  the  two f a c t o r s  which determine the  
na ture  of any inves t iga t ion  undertaken wi th in  t h e  Future P ro jec t s  Branch. 
A c e r t a i n  "mission," i n  the  broad sense, o r i g i n a t e s ,  say,. i n  our Washing- 
ton Headquarters. A t  t h i s  s tage,  the mission statement may not  be 
mathematical, bu t  i s  more l i k e l y  t o  be s t a t e d  i n  terms such as: t o  go 
around the  moon and r e t u r n  with a spec i f ied  veh ic l e  i n  such a way t h a t  
c e r t a i n  funct ions (such a s  photography) can be performed. Such missions 
can genera l ly  be construed t o  f a l l  within one of the  four broad ca tegor ies  
l i s t e d  i n  the  diagram. 
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FIGURE 1 

For each mission, a c e r t a i n  po r t ion  of t he  necessary ana lys i s  may 
be considered to  f a l l  wi th in  the  realm of a e r o b a l l i s t i c s  ana lys i s ,  though 
not  necessar i ly  exc lus ive ly  so. 
t h a t  the  ana lys i s  of missions can be c a r r i e d  out  roughly i n  th ree  s t e p s ,  
shown i n  the diagram. The f i r s t  of these ,  f e a s i b i l i t y  s t u d i e s ,  concerns 
the  very f i r s t  rough ana lys i s  t o  determine whether t he  combination of 
veh ic l e  and mission i s  f e a s i b l e  o r  marginal. The mission i s  then i n  
some natura l  way divided i n t o  s t e p s ,  and the  phys ica l  phenomena of each 
a r e  analyzed as t o  how they may be b e s t  performed sepa ra t e ly  and a s  t o  
the  problems they pose. I n  the  second s t e p ,  =stems in t eg ra t ion ,  the  
p ieces  must be f i t t e d  together  t o  g ive  the  t o t a l  p i c t u r e ,  and a b e s t  over- 
a l l  so lu t ion  ex t rac ted .  This n e c e s s i t a t e s  t r adeof f s  (from the  i d e a l )  
i n  each s tep  t o  achieve the  most d e s i r a b l e  in tegra ted  approach. 
f o r  the  ac tua l  execution of t he  mission,  d e t a i l e d  f l i g h t  performance - da ta  must be generated.  

It has been found by p a s t  experience 

F ina l ly ,  

I n  order t o  c a r r y  out  the  inves t iga t ion  of the proposed missions,  
The na tu re  of a c e r t a i n  body of S c i e n t i f i c  d i s c i p l i n e s  i s  necessary. 

. 



these  d i s c i p l i n e s ,  
dependent upon the  

which is intended t o  be pointed out i n  Figure 1, is 
mission considered and the  ana lys i s  t o  be performed. 

L i s t ed  i n  the  f i g u r e  a r e  th ree  of the advanced techniques considered 
necessary f o r  development of the  adaptive guidance mode. These are: 
C e l e s t i a l  Mechanics, Calculus of Variations, and Large Comp u t e r  Exploita- 
t ion .  - 

The general  work scope of t he  Future P ro jec t s  Branch may then be 
defined as the  ( d i r e c t  o r  i n d i r e c t )  necessary extension of e x i s t i n g  
theory and app l i ca t ion  of theory i n  t h e  th ree  s t e p s  previously described. 

This, then, is t he  s t r u c t u r e  within which the  descr ip t ions  t h a t  
follow should be viewed. As each d i s c i p l i n e  and i t s  app l i ca t ion  is de- 
sc r ibed ,  it w i l l  be a t t empted ' t o  show i ts  r o l e  r e l a t i v e  t o  the  t o t a l  
branch funct ion and the  t o t a l  development of t he  adapt ive guidance mode. 
Any meaningful evaluat ion a s  t o  the necess i ty  o f ,  a p p l i c a b i l i t y  of and/or 
t he  s ign i f i cance  of each inves t iga t ion  must  be based on t h i s  more com- 
p r  ehens ive perspec t ive  . 
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CELESTIAL MECHANICS - GENERAL PERTURBATIONS 

M. C.  Davidson 

SECTION I. INTRODUCTION 

The problem of mission c r i t e r i a  formulat ion a s soc ia t ed  
with t h e  adapt ive guidance mode becomes d i f f i c u l t  when t h e  
mission involves  a f l i g h t  t h a t  is s t r o n g l y  a f f e c t e d  by 
other  bodies i n  t h e  s o l a r  sys tem i n  a d d i t i o n  t o  Earth.  The 
problem i s  to know what r e l a t i o n s h i p s  must be s a t i s f i e d  by 
t h e  codrdinates  o f  a vehicle  a t  the  te rmina t ion  of powered 
f l i g h t  i n  order  t o  produce a t r a j e c t o r y  s a t i s f y i n g  the  
mission. Present techniques involve guessing a se t  of 
co8rdinate  values a t  t h e  t h r u s t  t e rmina t ion  poin t  and s t e p -  
w i s e  computing the  r e s u l t i n g  t r a j e c t o r y .  T h i s  guess is 
then  success ive ly  improved u n t i l  t he  t r a j e c t o r y  satisfies 
mission requirements. This process  of course does not 
answer the needs of the  adaptive guidance mode. The d e s i r e d  
r e l a t i o n s h i p s  f irst  mentioned do, however, and a r e  being 
inves t iga t ed  now both in-house and by con t r ac to r s  under 
the con t r ac t ,  "Guidance and Space F l i g h t  Theory. " 

The problems encountered f a l l  n a t u r a l l y  i n t o  t h e  f i e l d  
of c e l e s t i a l  mechanics, and i n  p a r t i c u l a r ,  they  a r e  u s u a l l y  
contained i n  the  r e s t r i c t e d  n-body problen. The term 
r e s t r i c t e d  i s  used when i t  is understood t h a t  t he  motion of 
the  mass under inves t iga t ion ,  f o r  example, a spacec ra f t ,  
does not a f f e c t  i n  any way the motion o f  t he  remaining masses. 

C e l e s t i a l  mechanics i s  one of  the most h ighly  developed 
branches of mathematics. Euler, some two hundred years  ago, 
considered many important problems i n  t h e  f i e l d ,  ( f o r  
example, the  problem of two f ixed  cen te r s  and t h e  r e s t r i c t e d  
t h r e e  body problem). The n ine teenth  century  produced mathe- 
mat ic ians such as Lagrange, Gauss, Legendre, Weierstrass, 
Jacobi ,  and Poincare' who contr ibuted g r e a t l y  t o  t h e  f i e l d .  
The body of knowledge continues to grow i n  t h e  twen t i e th  
century  by the  i n v e s t i g a t i o n  of Wintner, Levi-Civita,  
Birkhoff', and S iege l ,  t o  mention a few. These mathematicians 
and o the r s  have produced techniques,  which make up a l a r g e  
p a r t  of mathematical ana lys i s ,  designed t o  so lve  problems 
of  c e l e s t i a l  mechanics. Even w i t h  such concentrated e f f o r t s  
t h e  genera l  motion i n  t h e  n-body problem (n > 2 )  is  not  
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completely understood. The fol lowing is a d i scuss ion  of 
some of the techniques app l i ed  to the problems of space 
t r a v e l .  

of  s o l u t i o n  i s  divided i n t o  two types,  r igorous  a n a l y t i c  
so lu t ions  and pe r tu rba t ion  techniques.  Rigorous a n a l y t i c  
so lu t ions  a r e  taken to be those s o l u t i o n s  which are mathe- 
ma t i ca l ly  exac t  i n  t h e  sense that the v a r i a b l e s  may be 
computed t o  any desired degree of accuracy. The term 
"per turba t ion"  r ep resen t s  t h e  idea of consider ing the so lu -  
t i o n  as a d e v i a t i o n  from a known func t iona l .  Thus, we 
say  the known f u n c t i o n a l  is  per turbed i n t o  t h e  s o l u t i o n  of 
the problem under inves t iga t ion .  The f u n c t i o n a l  i s  u s u a l l y  
the s o l u t i o n  of  a c l o s e l y  a s soc ia t ed  problem. A f u r t h e r  
d i v i s i o n  is made i n  pe r tu rba t ion  methods as to t h e i r  use.  
A general  p e r t u r b a t i o n  i s  understood to mean one which 
y i e l d s  a n  approximation t o  t h e  s o l u t i o n  as an e x p l i c i t  
func t ion ,  v a l i d  f o r  some c l a s s  of the gene ra l  s o l u t i o n .  I n  
o the r  words, genera l  pe r tu rba t ions  a r e  designed t o  provide 
information i n  the l a r g e  about some class of o r b i t s .  I n  
c o n t r a s t  t o  genera l  pe r tu rba t ions ,  s p e c i a l  pe r tu rba t ions  
are designed t o  f a c i l i t a t e  t he  computation of o r b i t s  f o r  a 
s p e c i f i c  se t  of i n i t i a l  condi t ions .  Such methods u s u a l l y  
employ stepwise i n t e g r a t i o n  techniques.  

For convenience the  d i scuss ion  of s o l u t i o n s  and methods 

Problem contained under t h e  genera l  headings, ( r igorous  
a n a l y t i c  s o l u t i o n ,  genera l  pe r tu rba t ions ,  and s p e c i a l  
pe r tu rba t ions ) ,  a r e  discussed i n  that  order .  

SECTION 11. DISCUSSIONS 

A .  RIGOROUS ANALYTIC SOLUTIONS 

1. E u l e r ' s  Problem of Two Fixed Centers 

This problem c o n s i s t s  of descr ib ing  the motion of 
a po in t  mass, P3, under t h e  inf luence  of two o t h e r  mass 
po in t s ,  P 1  and Pa, which a r e  fixed i n  space f o r  a l l  t i m e .  
Af t e r  t h e  proper choice of l eng th  and mass, the  Lagrangian 
func t ion  o f  P3 i n  a space fixed Car tes ian  system ( x l ,  x,) i s  

1 - P  P 
L = + + 

I x + p I  I x + p - - l l '  

where x = X I  + i x2, 1-p and p are the masses of P I  and P2 
r e spec t ive ly  and 1x1 means the abso lu te  value of x .  



Let us make the transformation, 

X I  = $(q 4 + o ) ,  X22 = t(q2 - 1)(1-52), with 

a = l - 2 p .  

We find the Lagrangian function L takes the form of Liouville 
and the system is soluble by quadratures. 

The solution is expressed by the integral equations, 

and 

I to -d (1- e2) (h t2-8 O€,+h I>' 

The total energy h and hl are constants of 
integration. We see t ha t  the introduced parameter, s, may 
be considered the new time variable. This follows from the 
fact that q2 - t2 is the product of the distances P1P3and 
P2P3 and hence a non-negative function. We say s is a real 
increasing function of the real time, t. 

The integrals in the solution are elliptic integrals; 
hence, q and €, are elliptic functions of s. It can be shown 
that t is an elllptic integral of the third kind in the 
coordinates q and 4 .  In order to represent the coordinates 
as explicit functions of s, it is necessary to make three 
distinctions of orbits. They will be called Class I, Class 
11, and Class I11 and may be illustrated as follows. 
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Class I represents orbits which will be contained 
for all time within a single ellipse, r )  = q2. 

1 1 = 1 1 2  

*xl 

CLASS I 

Class I1 represents orbits which are contained 
within a similar ellipse but are also constrained to lie t o  
the left of the hyperbola, 4 = (1, or to the right of the 
hyperbola, 4 = 42, depending upon the initial point. 

/ I I = 1 1 2  
CLASS I1 

s=si-- s =  s2 +l= 
Class I11 represents orbits which are contained 

within the ellipse, r )  = q2, but must lie outside the inner 
ellipse, 7) = q1. The circumlunar orbits will be contained 
in Class I. 

/II = 111 

is 

. -  ~ . 

CLASS I11 

The explicit functional representation of Class I 

- I  



We see  that  the problem of two f i x e d  cen te r s  can 
be so lved  e x a c t l y  a l though the r ep resen ta t ion  of t h e  s o l u t i o n  
is  d i f f e r e n t  f o r  Class I, 11, and 111. The s o l u t i o n  of t h i s  
problem i n  t h r e e  dimensions follows e x a c t l y  the same l i n e  
as tha t  i n  two dimensions. The importance of  t h i s  problem 
is  r e a l i z e d  when one considers the  p o s s i b i l i t y  of  per turb ing  
these  s o l u t i o n s  i n t o  the s o l u t i o n  of the r e s t r i c t e d  three 
body problem. 

2. Power S e r i e s  Representation to the Solu t ion  of 
the Three Body Problem 

Sundman has shown t h a t  t h e  equat ions of motion f o r  
the  t h r e e  body problem can be regular ized;  hence, they  are 
so lub le  by power s e r i e s .  The t i m e  i n t e r v a l  f o r  which these 
s e r i e s  are v a l i d  may be chosen as any des i r ed  value. D r .  
Schulz-Arenstorff of Computation Divis ion has shown that 
t h i s  a l s o  ap  l i e s  to the r e s t r i c t e d  t h r e e  body problem 
(Reference 17. Omitting the  detai ls  of the method the  
s o l u t i o n  has t h e  form 

x = > : a n w  , h y = >: bn w h y  and t = >: en w 
n=O n=O n = l  

The importance o f  these series is  that they  i n  theory  
so lve  the three body problem; however, power s e r i e s  s o l u t i o n s  
o f f e r  no information i n  the  l a rge  on the geometr ical  behavior 
of the o r b i t s .  Also, t.he s e r i e s  is not p r a c t i c a l  $0 w e  i n  
the computation o f  o r b i t s  under present  day machine c a p a b i l i -  
t i e s  due to t h e i r  extremely slow r a t e  of convergence. 

3. Per iodic  Orbi ts  i n  the Planar  Three Body Problem 

W e  wish to o u t l i n e  the cons t ruc t ion  of a fami ly  of 
pe r iod ic  o r b i t s  i n  the  r e s t r i c t e d  three body problem; however, 
it should be noted t h a t  the method i s  app l i cab le  to t h e  p l ana r  
three body problem w i t h  no r e s t r i c t i o n s  on the masses. The 
ex i s t ence  proof and method of cons t ruc t ion  is due to Siege1 

< (Reference 2 ) .  

I n  the r e s t r i c t e d  problem w e  are to cons t ruc t  pe r iod ic  
o r b i t s  of the i n f i n i t e s i m a l  point  mass, G ,  about the mass 
po in t  P, (of mass p )  where t h e  mass p o i n t s  P, (of  mass 1 - p ) 
and P, revolve i n  plane c i r c l e s  about t h e i r  common c e n t e r  
of mass. A f t e r  t he  proper choice of the u n i t  length,  mass, 
and t i m e ,  the d i f f e r e n t i a l  equation of motion of Ps i n  the 
usua l  r o t a t i n g  Car tes ian  coordinate system (z , ,  z 2 )  is  
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.. Z+P z+p-1 
( 1 - P )  - P  

Iz+p-ll 
z + 2  i z  - z  = -  

Iz+F11 

where z = z 1  + i z 2 .  

system whose o r i g i n  coincides  w i t h  t he  poin t  mass P1. 
des i r ed  t ransformation i s  simply 

Let us t ransform t h i s  equat ion  t o  a coordinate  
The 

z + x =  1 - p  

where x = x1 + i x2. The r e s u l t i n g  equat ion is 
3 
2 

1 - -  3 1 

[ 
.. 
x + 2 i 2 - x = (p-1) L ( 1 - X ) -  (1-z)- -p x-z x 

where is the complex conjugate of x .  3 
1 

If the term (p-1) [l - (1 - x ) - ~  (1 - x)- 
i s  expanded i n  a power s e r i e s  i n  x and F t h i s  s e r i e s  will 
converge absolute  f o r  1x1 < 1. Grouping the  l i n e a r  terms 
we have 

3 - - -  1 
-z x = P(x ,  X) 

.. 
x + 2 i + $ ( p - 3 ) ~  + 3 /2 (p - - l )Y  +P X 

where P is a power s e r i e s  in x and X s t a r t i n g  w i t h  second 
order  terms. 

Now consider  t he  s o l u t i o n  t o  the  first order  
d i f f e r e n t i a l  equat ions 

e = a 4 ,  q = - a q  

w i t h  a=+* i ( e q ) - 3  and 7) = -4 , 
I!, . It follows immediately that  the  product i s  constant  
and f u r t h e r  t he  s o l u t i o n  is c i r c u l a r  o r b i t s  i n  the  ( el, e2) 
rectangular  coordinate  system w i t h  4 = el + i e2. 

t he  complex conjugate of 



L e t  us attempt to represent  t h e  s o l u t i o n  of t he  
d i f f e r e n t i a l  equat ions i n  x as a func t ion  of 4 and r). 
Fur ther ,  l e t  t h i s  s o l u t i o n  take t h e  form 

1 1 

where 

and .! may take on i n t e g e r s  such t h a t  2 I/!\ < k. 

f o r  a k t ,  (2  111 k, k = 1, 2, 3, ...), and the  convergence 
of the s e r i e s  f o r  some pos i t i ve  values  of 141. 
accomplished by S iege l .  

The ex is tence  proof reduces t o  showing the s o l u b i l i t y  

T h i s  is 

T h i s  s e r i e s  converges q u i t e  r ap id ly  and, hence, 
lends i t se l f  t o  t he  a c t u a l  computation of such o r b i t s .  

B. GENERAL PERTURBATIONS 

1. Hamilton-Jacobi Approach 

The p a r t i c u l a r  procedure being considered by 
Republic Aviation takes  the  s o l u t i o n  of  Euler's problem of 
two f i x e d  cen te r s  as the base of' tne s o l u t i o n  to t he  r e s t r i c t e d  
t h r e e  body problem. 
be t h e  formal Hamilton-Jacobi technique. 
f o r  E u l e r ' s  problem be 

The treatment of E u l e r ' s  problem i s  t o  
Let the  Hamiltonian 

F = F (x, Y, t) 

where x is  the p o s i t i o n  def ining vec to r  and y i s  the  
momentum vec tor .  ,Let us def ine a func t ion  s by the equat ion 

F (x, sx, t) + St  = 0 

where sx i s  a vec tor  whose components are - . L e t  t h e  
ax, 
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introduced vector with constant components. The solution 
t o  Euler's problem is x(t) defined by 

' 

where /3 is a vector with constant components. The momentum 
y(t) is given by 

y = sx. 

The Hamiltonian for the restricted three body problem 
may be written as 

H = F + G ,  

the Hamiltonian for Euler's problem plus the function G. 
Thus, the Hamilton-Jacobi equation becomes 

H = F + G + St = G 

since F + st = 0. 
solution of the reduced.equation corresponding t o  the new 
Hamiltonian G is due t o  Delaunay. 

The technique f o r  approximating the 

2. Canonical Initial Conditions 

The Hamiltonian for the restricted three body problem 
in the usual rotating Cartesian coordinate system, (xl, x 2 )  is 

- u +  
where 

1 - P  P u=-+ , and x = x1 + i x 2 .  
IX+P I IX+P-lI 

If we let 
2 F = +(y1 + yz2) - u 

and G = x2 Y1 - x1 Y29 
we have 

H = F + G .  

. 



, 

z =  

Under such a d iv i s ion  of  H, t he  func t ion  F i s  
e x a c t l y  the Hamiltonian func t ion  of E u l e r ' s  problem of two 
fixed cen te r s .  

The d i f f e r e n t i a l  equat iomof  motion are produced 
by the matrix equat ion 

I \  

x i  
x2 
Y 1  
. 
Y2' 

I 

0 

0 

-1 
0 

\ 

0 1 0  
0 0 1  
0 0 0  

f 

Kxl 
s2 
HY 1 

or w e  w r i t e  s imply 

z = J H,. 

Let t h e  s o l u t i o n  
(of Euler  s problem). 

w = J F ,  

t o  t he  d i f f e r e n t i a l  equat ions 

func t ions  of the  i n i t i a l  conditions,  wo, and t h e  t i m e ,  t . 
Fur ther ,  l e t  us,  wi th in  the  s o l u t i o n  w = w (wo, t ) ,  rep lace  
the i n i t i a l  condi t ions ,  wo, by the  unknown func t ion  of 
time <k,  (IC = 1,. . . J 4 ) y  and f i n d  t h e  d i f f e r e n t i a l  equat ion  
s a t i s f i e d  by <k such t h a t  

The r e s u l t  is 

< = J G *  where G* = G ( w  (<, t)). c y  
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The process of dividing the Hamiltonian is again 
applied, producing an approximation for ck(t) as 

(1  = x20 sin t + xl0 COS t 
c2 = x20 cos t - xlo sin t 
cs = (kao + xlo) sin t + (ilo - xzo) cos t 
c4 = (kz0 + x lo>  cos t - (il0 - x20) sin t 

where (xlo, x20, il0, $40) are the initial conditions in a 
rotating coordinate system. 

Reference 3 treats the method in detail. 

3. The Parameters of Mean Motion 

L e t  us consider the system of differential equations 

ik = fk (x,..., x 9 a) 9 (k = 1, ..., 4) 
where the right hand sides are functions of the coordinates 
(xi, . . . , x4) and the parameter w. The equations of 
motion for the restricted three body problem in a rotating 
coordinate system may be put into this form. The University 
of Kentucky is conducting a study where the parameter is the 
mean motion. Consider the solution of these differential 
equations t o  have the form 

which is a power series in w with the coefficients as functions 
of the initial point, xk(t=O) = ek, and time. The differential 
equations for ak,j are 

d 



where 

Due t o  the fact  that i f  t h e  mean motion w w a s  
zero ,  Eulerls problem would be produced, t he  ak,O 
(k=l ,  ..., 4) a r e  the coordinates wi th in  t h e  Eu le r  problem. 

1. 

2. 

3.  

"On t h e  Representation of  the So lu t ion  of t h e  R e s t r i c t e d  
Problem of Three Bodies by Power-Series," Report N o .  
DC-TR-1-59 by D r .  Richard Schulz-Arenstorff .  

"Vorlesungen Uber Himelsmechanik", by C .  L. S iege l ,  
Springer-Verlag. 

"Reduction of t he  Restricte'd Problem of Three Bodies t o  
a Per turba t ion  of E u l e r ' s  Problem of Two Fixed Centers," 
Report No. MTP-AERO-61-62, by M. C. Davidson, Jr. and 
D r .  R. Schulz-Arenstorff. 

I t  
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SECTION I. INTRODUCTION 

In  the  following a b r i e f  ou t l ine  s h a l l  be given of t he  work t h a t  Mr. 
Tucker of Future P ro jec t s  Branch and I a r e  doing on the  numerical com- 
pu ta t ion  of  o r b i t s .  The main object  of t h i s  work i s  t o  ge t  economic 
decks of var ious degrees of accuracy f o r  th ree  types of t r a j e c t o r i e s :  
1. t r a j e c t o r i e s  around one body, espec ia l ly  t h e  ea r th ,  2. t r a j e c t o r i e s  
i n  t h e  f i e l d  of two bodies, espec ia l ly  the  earth-moon space, and 3. 
t r a j e c t o r i e s  i n  the  f i e l d  of several  bodies,  i .e . , the  s o l a r  system. 

The N-Body Problem, except f o r  k2, cannot be solved i n  a convenient 
c losed  form, apa r t  from a very few s p e c i a l  cases.  Thus one i s  more o r  
less forced t o  use numerical i n t eg ra t ion  f o r  t h e  a c t u a l  computation of 
o r b i t s ,  e s p e c i a l l y  i f  t he  bodies cannot be considered t o  be poin t  masses. 

SECTION 11. DISCUSSIONS 

A. TYPES OF DECKS 

Je t  Propulsion Laboratory furnished Aeroba l l i s t i c s  Division with an 
accura te  and v e r s a t i l e  in te rp lane tary  deck, which s u f f i c e s  f o r  a l l  pre-  
s en t  purposes and those coming up in  the  near fu tu re ;  thus the re  i s  no 
need a t  t h i s  t i m e  f o r  the  development of an own i n t e rp l ane ta ry  deck. On 
the  o the r  hand, the  decks which we a r e  e s t ab l i sh ing  now a r e  s u i t a b l e  f o r  
t he  computation of i n t e rp l ane ta ry  t r a j e c t o r i e s  a f t e r  only minor changes, 
although they would not  be very convenient. 

The computation of t r a j e c t o r i e s  of  e a r t h  s a t e l l i t e s  and t h a t  of lunar  
t r a j e c t o r i e s  pose e s s e n t i a l l y  the  same problems; t h u s , t h e r e  i s  no need 
t o  make any d i s t i n c t i o n s  between these i n  the  following. 

B. SPECIAL PERTURBATION METHODS 

The c l a s s i c a l  theory of s p e c i a l  per turba t ions  - the  term " spec ia l  
per turbat ions ' '  used f o r  a l l  methods of  numerical i n t e g r a t i o n  here  - 
o f f e r s  mainly th ree  methods for  numerical work: Cowell's method, Encke's 
method, and the  v a r i a t i o n  of parameters method. The f i r s t  two a r e  used 
almost exc lus ive ly  f o r  numerical work, while t h e  equations of t he  t h i r d  
method a r e  a l s o  a s t a r t i n g  po in t  for genera l  pe r tu rba t ion  theory,  i.e.,  
f o r  a n a l y t i c a l  inves t iga t ions .  I n  addi t ion,  w e  a r e  a l s o  inves t iga t ing  
a s  a gene ra l i za t ion  of Encke's method the  so-ca l led  Varicentr ic  method, 
which has been developed i n  Future P ro jec t s  Branch i n  order  t o  overcome 
c e r t a i n  d i f f i c u l t i e s  of the  o lde r  methods. 

Cowell's method i s  the  s t ra ightforward numerical i n t e g r a t i o n  of t he  
d i f f e r e n t i a l  equations of motion, which a r e  r e f e r r e d  e i t h e r  t o  bary- 
c e n t r i c  coordinates  o r  t o  one of the bodies (m,). 
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B A R Y C E N T R I C  C O O R D I N A T E S  
- -  I 
r - ru ;=-x r m ,  - 3  

V = O  I s -  CUI 

C O O R D I N A T E S  R E F E R R E D  T O  M A S S  ino 

- -  
TU = Tu( t I 

This method poses the  l e a s t  problems, but  it i s  a l s o  gene ra l ly  the  l e a s t  
accurate  or ,  r e f e r r e d  t o  a f ixed  accuracy, t he  slowest of the  methods 
mentioned here. It should be mentioned t h a t  i n  the  astronomical l i t e r a t u r e  
the  name "Cowell's method" i s  mostly connected with a s p e c i f i c  i n t e g r a t i o n  
scheme, while the  d e f i n i t i o n  given here i s  t h a t  commonly used i n  a s t r o -  
naut i c s  . 
Zncke's method i s  appl icable  when the  space sh ip  moves i n  the  c e n t r a l  
f i e l d  of one c e l e s t i a l  body (m,) so t h a t  the  inf luence of t h e  o the r  

bodies can be considered a s  a small  pe r tu r -  
bat ion.  The t r a j e c t o r y  f i s  approximated 
piecewise by conic sec t ions  Pc, which a r e  
determined by the  c e n t r a l  f i e l d  of mo and 
by having a t  a c e r t a i n  t i m e  to the  same 
i n i t i a l  values  a s  the  t r u e  t r a j e c t o r y :  

AP f0 = 5(t,) = S,(t@) i, = at,) = $to) 

The d i f f e r e n c e d ?  between the  t r u e  and the  
approximate po s i t  ion, 

i s  numerically - in tegra ted .  Introducing 

5 = ic + A5 

- re = -rm,T rC 
ENCKE'S METHOD 

rC 
i n t o  the  d i f f e r e n t i a l  equations of motion r e f e r r e d  t o  mo,one g e t s  

The main advantages a r e :  1. the  d i f f e rence  A? i s  usua l ly  much smaller  
than the  true coordinate  P i t s e l f ,  so t h a t  the  numerical i n t e g r a t i o n  
can be performed with less accuracy and the re fo re  f a s t e r ;  2. c e r t a i n  
terms i n  the d i f f e r e n t i a l  equations,  which appear a s  t h e  d i f fe rence  of 
two almost equal expressions,  can be expanded i n t o  f a s t  converging s e r i e s ,  
thus increasing accuracy by a n a l y t i c a l l y  removing the  la rge  p a r t s  of t he  
t e r m  and increasing speed of computation by s implifying the  term. 
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Series expansion with ( 1  + u)-' = 1 + B(u) 

- r - - Fc = - ( A i  1 + FB(Xc)) XC = -(iFcAF) 2 + (Ai,*) 
r 3  r l  r l  rc' 

Var icen t r i c  method This i s  a gene ra l i za t ion  of  Encke's method i n s o f a r  
as t h e  t r u e  t r a j e c t o r y  i s  again approximated by a conic sec t ion ;  but now 

V A R I C E N T R I C  METHOD 
t h e  conic  s e c t i o n  i s  not  r e f e r r e d  t o  
one of t h e  r e a l  bodies, as e a r t h  o r  
moon o r  sun, bu t  t o  a f i c t i t i o u s  body 
with both v a r i a b l e  mass and pos i t ion .  
The f i c t i t i o u s  body m* i s  chosen so  
t h a t  i t s  c e n t r a l  f i e l d  approximates 
t h e  r e a l  f i e l d  i n  t h e  neighborhood of 
t h e  space sh ip  "as well as possible". 
I n  add i t ion ,  t h i s  f i c t i t i o u s  body 
s h a l l  co inc ide  wi th  t h e  r e a l  body i n  
the s p e c i a l  ca se  of a c e n t r a l  f i e l d ,  
and i t  s h a l l  be very  c l o s e  - i n  m a s s  
and p o s i t i o n  - t o  a r e a l  body i f  t h e  

space sh ip  moves very  c l o s e  t o  t h i s  r e a l  body. This method i s  intended 
t o  avoid t h e  d i f f i c u l t y  of  changing the re ference  body, which i s  neces- 
s a r y  i n  Encke's method and t h e  v a r i a t i o n  of  parameters method, i f  t h e  
space sh ip  moves from t h e  neighborhood (i.e., t h e  c e n t r a l  f i e l d )  of one 
body t o  t h a t  of another. In  t h e  v a r i c e n t r i c  method t h e  f i c t i t i o u s  r e f e r -  
ence body moves, genera l ly  continuously, from t h e  one r e a l  body t o  t h e  
o the r  one. 

Var i a t ion  of parameters method The d i f f e r e n t i a l  equations of motion 
- .. r -  - 

F = - p , - ; + F  F = - g r a d i R  
r 

N 1 (FF,) 

u = l  

a r e  transformed t o  a new se t  of dependent v a r i a b l e s :  
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New V a r i a b l e s  S1, ...,Sc b y  - 
F = f ( S  l,...,Sc,t) F = i ( 5 1 ,  . . * I  q c ,  t )  

New D i f f e r e n t i a l  E q u a t i o n s  

t j  = h i  (S1,**., 56,t) j = 1, ..., 6 

These new variables are usually chosen to be constants of the Two-Body 
motion; i.e.,for the case of the Two-Body problem the solution of the 
new differential equations reduces to constants. 

Spec ia l  S e t  o f  New V a r i a b l e s  : K e p l e r i a n  E l e m e n t s  
The t r a n s f o r m a t i o n  e q u a t i o n s  a r e  t h e  
e q u a t i o n s  o f  t h e  t w o - b o d y  p r o b l e m .  

a = semimajor  axis 
e = e c c e n t r i c i t y  
I = i n c l i n a t i o n  

E = mean longi tude a t  epoch t = O  
mean long i tude A = n t  + E 

G =  l o n g i t u d e  o f  p e r i h e l i o n  
n = long i tude o f  ascending n o d e  

With these variables the new set of differential equations reads: 

a : - -  2 dR 
na a& 
m ( 1 - m )  -.-- aR Jf-ei aR e :- 

na2e a& na2e dG 

na a a  n a 2 e  

dR - n :  1 
na2 /i7 sin I a1 



C. PERTURBATIVE TERMS 

There a r e  no p r i n c i p a l  d i f f i c u l t i e s  i n  e s t a b l i s h i n g  t h e  equat ions of 
motion, taking i n t o  account a l l  major g r a v i t a t i o n a l  inf luences.  The 
p r a c t i c a l  ques t ion  concerning t h e  evaluat ion of t hese  equat ions arises: 
Which terms of the  equations can be s impl i f i ed  or neglected i n  order  t o  
speed up computation, without giving up the  des i red  accuracy? In  our 
case  of t r a j e c t o r i e s  i n  t h e  neighborhood of t he  e a r t h  o r  i n  t h e  ear th-  
moon space,we have e s s e n t i a l l y  two sources of g r a v i t a t i o n a l  per turba-  
t i o n s :  f i r s t ,  d i s t a n t  ce l e s t i a l  bodies, a s  sun, p lane ts ,  and moon o r  
e a r t h  (e.g.) i n  Encke's method t h e  moon ( e a r t h )  w i l l  per turb  the  motion, 
i f  t he  e a r t h  (moon) i s  t h e  reference body); secondly, t h e  obla teness  of 
t h e  e a r t h  o r  moon. 

Oblateness Consider f i rs t  t h e  per turba t ions  caused by t h e  obla teness  of 
t h e  e a r t h  ( t h e  same cons idera t ions  hold a l s o  f o r  t h e  moon). For p r a c t i c a l  
reasons they a r e  divided i n t o  th ree  types: "coordinate system", "preces- 
s i o n  and nutat ion",  and "equator ia l  bulge". They s h a l l  be  discussed 
b r i e f l y .  

Coordinate system Physical ly ,  of course, t h e  choice of t he  coordinate  
system i s  not  considered t o  introduce pe r tu rba t ions ;  but  i n  a formal- 
mathematical sense, t h e  change to  a new coordinate  system can  introduce 
a d d i t i o n a l  terms i n t o  t h e  d i f f e r e n t i a l  equat ions,  which can be considered 
formally a s  per turba t ions .  I n  t h i s  sense t h e  n o t a t i o n  should be under- 
stood. 

The plane of t h e  mean equator  of da te  moves r e l a t i v e  t o  t h a t  of  t h e  
mean equator  of a f ixed  epoch, t he  motion being a r o t a t i o n  through about 
20" p e r  year. The t abu la t ed  coordinates of t he  c e l e s t i a l  bodies a r e  
usua l ly  r e f e r r e d  t o  t h e  e q u a t o r i a l  (or e c l i p t i c a l )  coordinate  system of  
a f ixed  epoch, mainly 1950.0, o r  t o  the  mean equator  ( e c l i p t i c )  of date.  
-*- A c c i r m e  - -... t h a t  we want t o  coq?u te  a t r a j ec to rp  fo r ,  say 1970. At t h i s  t i m e  
t h e  mean equator of date,  which i s  t h e  re fe rence  plane f o r  t he  obla teness  
terms, has an i n c l i n a t i o n  of about 7 '  r e l a t i v e  t o  t h a t  of  1950.0, and 
t h e  quest ion is :  How much does t h i s  displacement of the  e q u a t o r i a l  plane 
inf luence  the  t r a j e c t o r y ?  O r ,  i n  other words: How much does a t r a j e c t o r y  
d i f f e r  from the  t r u e  one, i f  w e  disregard t h i s  motion of t he  equa to r i a l  
p lane?  Rigorous, but  time-consuming so lu t ions  are: 1. Compute i n  the  
coordinate  system of 1950.0 and consider t he  obla teness  terms a s  func- 
t i o n s  of t i m e ;  o r  Z., formulate t h e  equations of  motion i n  an e q u a t o r i a l  
coordinate  system of  date ,  and transform t h e  coordinates  of t h e  c e l e s t i a l  
bodies i n t o  t h i s  system. 

Precession and nu ta t ion  A s  mentioned, the  equator  of da te  moves r e l a t i v e  
t o  t h a t  of a f ixed  epoch. The secular  p a r t  of t h i s  motion i s  c a l l e d  pre- 
cess ion ,  t h e  pe r iod ic  o r  almost per iodic  p a r t  i s  c a l l e d  nuta t ion .  The 
quest ion,  s i m i l a r  t o  t h a t  j u s t  discussed, i s :  Of what type and magnitude 
i s  the  e r r o r ,  i f  w e  neglec t  t h e  motion of t he  equator  and consider  i t  
f ixed?  How long can i t  be kept f i x e d  without introducing an apprec iab le  
e r r o r ,  a f e w  days o r  weeks o r  longer? The answer depends of course on 
t h e  t r a j e c t o r y ,  i .e.,  how long it remains i n  t h e  neighborhood of t he  
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earth. It should be mentioned that the nutation is small, namely, the 
nutation in longitude is less than lo", the nutation in obliquity less 
than 20" . 
Equatorialbulue 
a series of Legendre polynomials, and accordingly one distinguishes 
between first, second, third ... harmonics. The practical question aris- 
ing here is: Which oblateness terms do influence the trajectory and up 
to which distance from the earth for a required accuracy of the computa- 
tion? 

The potential of an oblate body can be represented as 

Celestial bodies_ The question is quite similar: which bodies of the 
solar system (sun, planets) do influence the trajectory so much that 
they have to be taken into account and how large is this influence? 

D. TWO-BODY PROBLEM 

The Two-Body motion is a good approximation to the true motion in many 
cases of celestial mechanics. Furthermore, the solution of the Two-Body 
problem is the basis for various perturbation methods: For instance, in 
Encke's method a Keplerian conic section is used as an approximation to 
the true trajectory, and also the variation of parameters method is based 
on the solution of the Two-Body problem. Therefore a complete theory of 
the Two-Body problem, that is also satisfactory for numerical purposes, 
is important for applications. 

The following simple, but not unrealistic example shows clearly that 
in certain limiting cases the classical formulas for the Two-Body motion 
are unsatisfactory for numerical computations. 

Let the conic section be a near parabolic ellipse. Assume that 

8 p = 1 ; ro= distance = 2(1 - lO"f 10- ) ; vo= velocity = 1 2 

The semimajor axis a is given by = ro 
" 

One easily finds that 
r v2 = 2(1 - 'I 3.10'8) 
0 0  

1 = 107(1 +A) a =  = 107 - and that 1 

10-7 -L 3 ~ 0 ' ~  1: . 3  



such t h a t  
.77 107g a 6  1.43 lo7 , 

Thus, only t h e  order  of  magnitude of 
numbers, and it i s  obvious t h a t  the c l a s s i c a l  formulas 

can be der ived from the  given 

r = a ( l  - c o d )  ; x = a(cosE - e )  ; y = a 4 s  sinE 

can y i e l d  only t h e  order  of magnitude of t he  coordinates ,  even i n  the  
neighborhood of rO. 

A b r i e f  desc r ip t ion  of a new set of formulas f o r  t h e  Two-Body motion 

The equations of  motion f o r  f and r read: 
follows. I 

- 
r .. 2b-? p 

r--- 7 ' 0  
- :-w r 

Introduce a new uniformizing v a r i a b l e  s by 

s - s , : * f  1, 'a . 
Then 2, r, and t become func t ions  of s, and the  
new d i f f e r e n t i a l  equat ions read, denoting t h e  
d i f f e r e n t i a t i o n  with r e spec t  t o  s by a prime, 

r 5  b*r - 1 : 0 

m: m1+m2 r : l ~ l  
t':- 1 
pr r r r + I f i + n  : O  

T W O  - BODY PROBLEM where 
,*,.za : t 

P a  Ibl:e - 
The vec to r  D i s  d i r ec t ed  towards the pe r i cen te r  of t h e  conic sec t ion ,  if 

Both t h e  equat ions f o r  f ( s )  and r ( s )  a r e  of t he  simple type 
a # 0. 

(*) wrf(u)+Mn O+N : 0 

U" 
M and N being constants .  .. 

J V:l 
Introduce funct ions S . (u)  by Sj(u):C (-1r pjq- 

S1(U') : 3k-A 
I 

Then, f o r  instance,  S,(rt):cos II 

The genera l  so lu t ion  of (*) can be w r i t t e n  a s  
Initial Values I+, w,, w,' Ir, (U-U,) Si[M(~-uJf J - (N+w,M)( u - uc)* S, [M (u -u,))] 
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Applying t h i s  r e su l t  t o  the d i f f e r e n t i a l  equations for ? ( s )  and r ( s ) ,  w e  
ge t  

T : F , + d  ( s -  s,) S, [h*( s - s,?] - (b+ Fa h’) ( s  - Sa? Sz [h*(s - s,?] Jkm 

By simple calculat ions one f inds then general expressions 
and Gauss’ Equations: 

for Kepler ’ s 

Kepler ’s  E q o a t i o n  



SECTION 111. APPLICATIONS 

Various decks using the aforementioned methods have been established 
or are being established. The most important of these are listed in the 
following brief survey. 

A. TRAJECTORY COMPUTATION DECKS 

Deck for earth satellites 

Purpose: investigations and applications to actual problems 
3-dimensional -- includes oblateness and 3 perturbing point masses 
Encke's method -- integration method: Nystr'dm -- coded in single 

and double precision 
Operational with: idealized coordinates of the perturbing bodies 

and eccentricity e< 1. 

Decks for the Restricted Three-Body Problem 

Purpose: investigations 
2-dimensional -- integration method: Nystram -- coded in double 

precision 

1. ) Cowell's method, geocentric coordinates operational 

2.)  Cowell's method, barycentric coordinates operational 

3 . )  Encke's method, geocentric coordinates operational 

4 . )  Encke's method, shifting reference body operational 

5.) Varicentric method, geocentric coordinates checkout 

6 . )  Varicentric method, barycentric coordinates checkout 
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CALCULUS OF VARIATIONS 

BY 
David Schmieder 

SECTION I. INTRODUCTION 

An a t t i t u d e  of ten  found i n  Future P ro jec t s  Branch is  
tha t  d i f f i c u l t  problems e x i s t i n g  a t  t h i s  t i m e  i n  space f l i g h t  
and guidance theory should be a t tacked  i n  t h e i r  complete 
form and solved stepwise,  r a the r  than t o  be watered down 
and covered up w i t h  assumptions which enable the ind iv idua l  
problems to be solved completely and immediately. Among the 
many advantages bel ieved t o  be gained by t h i s  approach are:  
(1) A l a r g e  carry-over of knowledge from the work done i n  
connection w i t h  one s p e c i f i c  app l i ca t ion  t o  t h e  work t o  be 
done i n  connection w i t h  t h e  next, s i n c e  most app l i ca t ions  
are based on t h e  same genera l  theory.  If many r e s t r i c t i o n s  
and s impl i fy ing  assumptions a re  made f o r  one app l i ca t ion ,  
the work done i s  no t  l i k e l y  t o  give much information toward 
the next.  ( 2 )  The "s ta te  of t h e  art' '  i n  the development 
and use of t h e  underlying s c i e n t i f i c  d i s c i p l i n e s  tends to 
be advanced, s o  as t o  a i d  i n  the s o l u t i o n  of more d i f f i c u l t  
problems i n  the f u t u r e ,  and (3) a b e t t e r  con t ro l  is  had 
over  t h e  problem, i n  t h a t  the degree t o  which the ideal 
s o l u t i o n  of the physical  problem is a t t a i n e d  is known. 

Such a philosophy has influenced t h e  development of 
t h e  adapt ive  guidance mode, as exemplified by the  incorpor-  
a t i o n  o f  optimum t r a j e c t o r i e s  i n t o  the  corresponding guidance 
processes .  Also, by the  nature of the scope of work of the 
branch as descr ibed e a r l i e r  i n  t h i s  r e p o r t ,  much t r a j e c t o r y  
computation i s  involved, w i t h  c e r t a i n  f l i g h t  mechanical 
s p e c i f i c a t i o n s  to be m e t .  Cer ta inly,  t he  most economical of 
such t r a j e c t o r i e s  must be found, f o r  even i f  they were not  
used i n  p r a c t i c e ,  they  would be needed f o r  comparison purposes. 
If t h i s  opt imizat ion problem i s  s ta ted i n  complete form, then 
i t  has as i t s  "independent var iab le"  an  e n t i r e  func t ion ,  the 
t h r u s t  d i r e c t i o n  func t ion  and, t he re fo re ,  au tomat ica l ly  fa l ls  
i n t o  t h e  realm of the ca lcu lus  o f  v a r i a t i o n s .  



S E C T I O N  11. D I S C U S S I O N S  

Required 
Accuracy 

M a t h e m a t i c a l  Prob - o f  Solution 

A. GENERAL D E S C R I P T I O N  OF THE V A R I A T I O N A L  PROBLEM 

- 

The scientific discipline represented by the calculus 
of variations has been receiving increased attention recently, 
and still needs further development in many areas. 
illustrate these areas, we may look  at the breakdown of a’ 
general problem in the calculus of variations as shown in 
Figure 1. 

To 

Is t o  Be Determined 

Inequality Constraints Required Assumed 
t I I a I I  

I I  
I 

FIGURE 1 

For the work in our branch, we usually have as a basis 
some physical statement of the problem. 
solution to this physical problem ordinarily requires a 
formulation of the problem in mathematical form. The 
solution of that mathematical problem should, with proper 
interpretation, determine the desired physical problem 
solution. This step in the solution ,is often a difficult 
one, and is a point where we wish to avoid making arbitrary 
simplifications. 

T o  arrive at the 
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A t y p i c a l  mathematical problem statement may be broken 
down i n t o  the  bas i c  parts shown i n  Figure 1. T h i s  includes 
f i rs t  a d e f i n i t i o n  of t he  var iab les  i n  the problem, and 
the re fo re ,  an  impl ica t ion  that i f  any o t h e r  q u a n t i t i e s  vary, 
t h e i r  v a r i a t i o n  does not  a f f e c t  the  problem wi th in  the  
requi red  accuracy of so lu t ion .  Next, t h e r e  a r e  c e r t a i n  
c o n s t r a i n t s  on these var iab les ,  imposed by the  phys ica l  
s i t u a t i o n ,  which must be formulated mathematically. Then, 
corresponding t o  t he  physical  problem of best u t i l i z i n g  t h e  
remaining degrees of freedom f o r  these va r i ab le s ,  t h e r e  is  
a mathematical statement defining a q u a n t i t y . t o  be extremized 
and t h e  c l a s s  of func t ions  which a r e  t o  be considered i n  the  
search  f o r  a so lu t ion .  

Note t h a t  t he  constraining r e l a t i o n s h i p s  a r e  f u r t h e r  
broken down i n t o  those phys ica l ly  required and those 
a r b i t r a r i l y  assumed. The same may be said of  the c l a s s  of 
admissible  func t ions .  Such r e l a t ionsh ips  that  are a r b i t r a r i l y  
assumed f o r  t he  sake of expediency a r e  what w e  wish  t o  e l imi -  
na te ,  s o  as to give as much freedom as poss ib l e  t o  t he  
extremizing func t ions .  A grea t  v a r i e t y  of e q u a l i t y  and 
i n e q u a l i t y  c o n s t r a i n t s ,  and q u a n t i t i e s  t o  be extremized, 
r e s u l t  from the  var ious physical problems t h a t  w e  face ;  and 
each presents  i t s  own p a r t i c u l a r  d i f f i c u l t y  i n  the  mathemati- 
c a l  a n a l y s i s  t o  be made. The r e s u l t  looked f o r  from the 
a n a l y s i s  is  a s e t  of conditions on t h e  va r i ab le s  which a r e  
both necessary and s u f f i c i e n t  to meet the  s p e c i f i e d  condi t ions 
of t he  problem, and which a r e  i n  a use fu l  form. A t  t h e  pres- 
e n t  s t a t e  of development, t h i s  r e s u l t  is only p a r t i a l l y  
a v a l i a b l e .  

I n  an e f f o r t  t o  more c lose ly  approach t h i s  goal ,  s e v e r a l  
methods of  a t t a c k i n g  the v a r i a t i o n a l  problem are c u r r e n t l y  
being pursued, and are l i s t e d  i n  Figure 2. 

T h i s  f i g u r e  a l s o  shows t h e  r e l a t i o n  of t he  theory  t o  
t h e  a p p l i c a t i o n s  made i n  our work, and shows i n  what areas 
some of the con t r ac to r s  are working. The symbols r e f e r r i n g  
t o  t h e  var ious con t r ac to r s  a r e  def ined on page 83 o f  t h i s  
r e p o r t .  These app l i ca t ions  w i l l  be discussed af ter  a genera l  
d e s c r i p t i o n  of the  general  nature of t he  approaches shown 
i n  Figure 2 has been given. 
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Classical - Pontryagin 

MSFC MHW G Q  Programing  

I TWO Point I I One Point I 
Boundar Value Problem I+{ 

I M I W  I 

Boundar Value Problem T 
I J RTN 

AREAS OF APPLICATION: ! r I Vacuum Flight I p p h e r i c  Flight I 
I I 1 i 

Impulsive Thrust - High Thrust Low Thrust Propelled Flight Reentry 
NV MSFC MSFC MSFC MSFC 

AUB GQ AUB 
UR RTN I I 

!Performance I I Guidance I *. I D ,  I 9 .1 

FIGURE 2 

B. EXAMPLE PROBLEM 

For an example with which to illustrate the various 
approaches, consider the flat earth problem as shown in 
Figure 3. 

of the approaches and the analogies between them, a vector 
notation is used. The components x3, x4 are Cartesian 
coordinates of the point assumed to have mass x5, and XI, 
x2 their first time derivatives. 
by a constant gravitational acceleration g and a thrust 
vector having a magnitude F for time to < t < T, zero for all 
other time, and which makes an angle x with the x4 axis. 
It is desired to find the time history X(t) which causes 
conditions to be reached at t = T such that setting 

In order to more clearly show the main characteristics 

Motion is influenced only 

4 
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FLIGHT GEOMETRY FOR AN EXAMPLE PROBLEM 

D i f f e r e n t  F l i g h t  Paths R e s u l t i n g  f r o m  
D i f f e r e n t  Choices of x(t), ii(t). i' \ .......................... 

Time : T 

FIGURE 3 

- 
F = i s  = o for t > T causes x(tM) = XM at some given later 
time tM, and in addition accomplishes this with the maximum 
value of x5(T). Newton's laws of motion are assumed. 

The mathematical formulation for this problem is given 
in Figure 4. The constraints are given by the equation of 
motion (l.), the initial condition (2.) and the final 
conditions (3. ). The quantity to be extremized and the 
class of admissible functions are given by (4.). For this 
example problem, no claim is made for applicability to any 
known physical problem, as it is over simplified for 
demonstration purposes. 
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MATHEMATICAL FORMULATION 

pat ions  of Motion: - 2. In i t ia l  r C 
F - s i n 1  
x 5  

x 5  

10 

20 
- c o s x - g  F 

ri X(t$ 
31 

ditions: 
- ?  

- 
X1 

4, Mathematical Problem 
To f i n d  among a l l  [twice d i f fe rent iab le ]  functions 

i ( t )  7 l ( t )  

tha t  set which sat isf ies [l., 2., and 3.,]  and maximizes [x,]. 

FIGURE 4 

C .  CLASSICAL APPROACH 

An ou t l ine  of t h e  procedure taken by the  c l a s s i c a l  
approach t o  t h i s  problem i s  given i n  Figure 5. F i r s t ,  the_ 
vec to r  and s c a l a r  product G a r e  def ined  as shown,where f 
is  as defined i n  Figure 4. Thus, imposing the  c o n s t r a i n t  
g causes the equat ions of motion t o  be s a t i s f i e d .  A r e s u l t  
of t he  c l a s s i c a l  theory then is  the n e c e s s i t y  f o r  x t o  e x i s t  
such that t h e  given Euler-Lagrange equat ions a r e  s a t i s f i e d .  
For the present example these  a r e  w r i t t e n  out  i n  equat ions 
( 5 . ) .  Thus, i t  i s  seen that the problem of f ind ing  the 
optimum funct ion becomes the problem of so lv ing  the  two- 
poin t  boundary value problem represented by the  system of 
d i f f e r e n t i a l  equat ions (5 . )  and (l.), t oge the r  w i t h  p a r t  o f  
the end conditions a t  the  two-point to and T, given by (2.  ) 
and ( 3 . ) ,  r e spec t ive ly .  What a s o l u t i o n  would c o n s i s t  of 
may be defined i n  two s l i g h t l y  d i f f e r e n t  forms. One would 
be the determination of the optimum funct ions  X ( t ) ,  ~ ( t ) ,  
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C L A S S I C A L  A P P R O A C H  

- -  
D e f i n e  g = i - f  

A n e c e s s a r y  c o n d i t i o n  i s  t h a t  T e x i s t s  

s a t i s f y i n g  t h e  E u l e r - L a g r a n g e  e q u a t i o n s  : 
- - 

6 6 -  - -  6’G 

aG - dG 
a x  a x  

a x  a i  
a n d  

o r  

1 

a n d  
A ,  c o s 1  - A 2  s i n  x = 

5. 

S o l v e  t h e  r e s u l t i n g  t w o  p o i n t  b o u n d a r y  v a l u e  

problem: l., 2.,3.,5. + a d d i t i o n  a I n e  c e s s a r y con d i t  i o n s. 

FIGURE 5 

and T, as required for performance work. The other, more 
applicable to guidance work, would be the determination of 
- the necessary values of the remining initial conditions 
X(to) and of T as functions of the given 
constants in equations (3. ). 

F(to) and mission 

The additional necessary conditions mentioned at the 
bottom of the chart refer to other necessary conditions found 
in the theory which are needed if sufficiency is to be demon- 
strated. These involve such things as distinguishing maxima 
from minima, and insuring proper behavior at the end points. 



42 

0 
0 
0 
0 
1 

D. PONTRYAGIN APPROACH 

The Pontryagin approach starts by de f in ing  the q u a n t i t y  
t o  be extremized i n  the form of a s c a l a r  product of two 
vec tors  and de f in ing  the v a r i a b l e  p through d i f f e r e n t i a l  
equat ions as shown i n  Figure 6. Then when H is  defined as 

, 6. 

P O N  T'RYAG IN APPROACH 
To max imize  S = c - i ( T )  where  = 0 

B(T)  = - e  li - - 
D e f i n e  j by pi = - i - f , i  , 

-p3 

- -p4 
o r  p =  0 

I 

so t h a t  i f  H i s  d e f i n e d  by H = B - f  
- -  - -  

t h e n  X = H, and p = -H, . 

The Maximum Pr inc ip le  s t a t e s  t h a t  
H must  be a maximum w i t h  respec t  t o  x a t  every 
t i m e  t : 

F - X5 (p,cosx-  p 2 s i n X )  = o 
a2 F 

7. 

- ax2 0 - %  (p ls inX-p ,cosX) -=  0 8. 

Solve t h e  r e s u l t i n g  t w o  point  boundary 

value problem : l . ,  2., 3 . ,  6., 7., under  r e s t r i c t i o n  8. plus 
a d d i t i o n a l  necessary c o n d i t i o n s .  

FIGURE 6 

shown, the system of d i f f e r e n t i a l  equat ions f o r  5 and the 
equations of motion (1. ) can be expressed i n  the canonical  
form given next .  The Pontryagin Maximum Pr inc ip l e  then 
states t h a t  H must be extremized w i t h  r e spec t  to t h e  value 
of x a t  each time along an optimum t r a j e c t o r y .  For our 
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example, the  equat ions f o r  6 
t he  condi t ions  tha t  H be maximized i n  (8 . )  and (9.). We 
a r e  thus  l e d  to the  two-point boundary value problem defined 
by e ua t ions  ( 6 . ) ,  (7 . )  and (1.) with end condi t ions ( 2 . )  
and 13.1 and t h e  added r e s t r i c t i o n  (8.) .  I n  f a c t ,  except 
f o r  8. t h i s  i s  the  same system as obtained by t h e  c l a s s i c a l  
approach, w i t h  ' ' p1s1 '  s u b s t i t u t e d  f o r  ' ' X ' S ~ ~ .  Also, (8.) can 
be der ived  from f u r t h e r  necessary condi t ions  i n  t h e  c l a s s i c a l  
approach. The advantages claimed by t h e  Pontryagin approach 
are perhaps a c l eane r  ana lys i s ,  and the  c a p a b i l i t y  of handling 
c e r t a i n  c o n s t r a i n t s  and c l a s ses  of admissible  func t ions  which 
have no t  been success fu l ly  t r e a t e d  by the  c l a s s i c a l  method. 

a r e  w r i t t e n  out  i n  (7.), and 

However, as mentioned before,  a two-point boundary value 
problem remains. An a n a l y t i c  s o l u t i o n  to t h i s  would be q u i t e  
u se fu l ,  but  a t  t h i s  time m o s t  so lu t ions  a r e  obtained by 
simply guessing a se t  of t h e  remaining i n i t i a l  values  and T, 
so lv ing  the  r e s u l t i n g  one -point boundary value problem, and 
i t e r a t i n g  f o r  the  s o l u t i o n  of the two-point problem. 

E. GFADIENT APPROACH 

Another approach t o  t h e  v a r i a t i o n a l  problem i s  the  
Gradient method, i n  which the  optimum x func t ion  is approached 
through non-optimum funct ions  a t  t h e  same time that  one o r  
a sequence of two-point boundary value problems a r e  solved 
by i t e r a t e d  one-point problems. This is  done as follows 
(see  Figure 7 ) :  A func t ion  space i s  s e t  up i n  which each 
poin t  corresponds t o  an  e n t i r e  func t ion  x ( t ) .  
"d is tance"  between two con t ro l  func t ions  i n  t h i s  space i s  
def ined  i n  some manner, such as t h e  e s s e n t i a l l y  Euclidean 
met r ic  shown i n  the f i g u r e .  Then i t  can be shown that t h e  
pa th  of s t e e p e s t  descent from an a r b i t r a r y  "point"  X ( t )  t o  
t h e  optimum x ( t )  has the  tangent given next  on the cha r t ,  
which tu rns  out  t o  be the p a r t i a l  with r e spec t  t o  x of the  
Pontryagin H func t ion .  The term "s t eepes t " ,  of course, means 
that  it i nc reases  the  q u a n t i t y  t o  be maximized as much as is 
poss ib l e  by a change i n  X ( t ) .  Thus, t ak ing  f i n i t e  s t e p s  
down t h i s  tangent  o r  g rad ien t  vec tor  would de f ine  t h e  scheme 
shown f o r  computing a sequence of improving x func t ions ,  
where the  g rad ien t  vec tor  is t o  be recomputed when it d i f f e r s  
s u f f i c i e n t l y  from the  a c t u a l  path of s t e e p e s t  descent  It 

would equal  Xk, and each component of Hx would have a zero  
magnitude. Thus, the  s tepwise procedure br ings  a s a t i s f a c t i o n  
of one necessary condi t ion  obtained i n  the Pontryagin approach. 
The d e r i v a t i v e s  of j7 to be computed a r e  t h e  same as given i n  
t h e  Pontryagin approach, the  only d i f f e rence  being that they  

The 

is  c l e a r ,  then, that  when the optimum x i s  reached, -k+l x 
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T h e n  t h e  t a n g e n t  t o  t h e  d i r e c t i o n  o f  m a x i m u m  
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To g e n e r a t e  a s e q u e n c e  o f  i m p r o v i n g  c o n t r o l  
f u n c t i o n  i, compu te  
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- 
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t h e  s e q u e n c e  i s  g i v e n  b y  

S o l v e  t h e  r e s u l t i n g  one  p o i n t  boundary value problem: 
l . ,  2., 3., 6., and 9. wi th  a r b i t r a r y  x, a n d  i t e r a t e .  

FIGURE 7 

are now computed along non-optimum t r a j e c t o r i e s  f o r  a l l  bu t  
the last s t e p .  The advantages claimed by t h i s  approach a r e  
that c e r t a i n  problems involving discontinuous func t ions ,  
such as between s t a g e  coas t ing  per iods,  a r e  more e a s i l y  
handled, and some of t he  d i f f i c u l t i e s  encountered i n  t h e  
i t e r a t i v e  s o l u t i o n  of the two-point boundary value problems 
of  the o ther  approaches a r e  avoided. 
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The decks now i n  use w i l l  be descr ibed b r i e f l y .  

. 

A. S-SERIES COMPUTER DECKS 

In  the  S-Series,  r o t a t i o n a l  dynamics are s i m p l i f i e d  
t o  the  s t eady  s ta te  so lu t ion ,  and motion i s  assumed t o  be 
p l ana r  about a non-rotating s p h e r i c a l  earth w i t h  o r  without 
atmosphere. The t r a j e c t o r y  shape is  determined by p resc r ib ing  
c e r t a i n  va r i ab le s ,  such as angle of attack a o r  t h r u s t  a c c e l e r -  
a t i o n  d i r e c t i o n  X, as d e f i n i t e  func t ions  of o the r  v a r i a b l e s .  
For r e l i a b i l i t y  and speed of operation, s p e c i f i c  decks are 
s e t  up f o r  f a i r l y  s p e c i f i c  purposes; as an  example, f o r  
atmospheric propel led f l i g h t  performance s t u d i e s ,  atmospheric 
r e e n t r y  s t u d i e s  o r  c o n t r o l  s tud ie s ,  a l l  on s i m p l i f i e d  models 
of the  phys ica l  s i t u a t i o n .  There are around eleven such 
decks i n  use,  most of them using Runge-Kutta i n t e g r a t i o n .  

B. B-SERIES COMPUTER DECKS 

A B-Series of decks i s  based on an accu ra t e  r ep resen ta t ion  
of a l l  f l i g h t  mechanical and r i g i d  body dynamical detai ls .  
F l i g h t  is  about a r o t a t i n g  oblate spheroid w i t h  atmosphere. 
These decks are used t o  check r e s u l t s  and design work of the 
S-Series decks, and to provide re f ined  and accu ra t e  informa- 
t i o n  necessary f o r  the a c t u a l  f l i g h t s  of vehic les .  

C .  V-SERIES COMPUTER DECKS 

The V-Series decks are again p r imar i ly  used f o r  perform- 
ance and guidance design work. The common f e a t u r e  of t hese  
decks i s  the replacement of t he  arbitrary shaping func t ions  
found i n  the S-Series w i t h  funct ions der ived according to 
the  ca lcu lus  of v a r i a t i o n s .  The first decks i n  t h i s  series 
were propel led f l i g h t  i n  a vacuum, 2 dimensional, w i t h  a 
s p h e r i c a l  e a r t h  assumed. These decks are w r i t t e n  i n  both  
Car tes ian  and p o l a r  form, w i t h  both Runge-Kutta and Taylor 
S e r i e s  i n t e g r a t i o n  procedures. These decks have been 
involved i n  most of t h e  r ecen t  upper stage performance 
and guidance s tudy  work. 

The e f f e c t  of atmosphere has been added w i t h  t he  
assumption of small angles  o f  a t t a c k  t o  form another  deck 
f o r  propel led f l i g h t .  

Another deck under experiment is  using the f l a t  e a r t h  
s o l u t i o n  as a base and using a s e r i e s  type i n t e g r a t i o n  to 
evalua te  the pe r tu rba t ions  due t o  the s p h e r i c a l  earth. 
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F. DYNAMIC PROGRAMMING APPROACH 

The last approach mentioned on the earlier chart is 
that of dynamic programming. This approach is based 
entirely on Bellman's Principle of Optimality that states 
that if a trajectory from to to T is optimal, then any sub 
arc of that trajectory from any intermediate time, t, to 
the final time must also be optimal. In the computation 
procedures then, to obtain the optimum trajectory from 
to to T, the interval is covered with a finite grid which 
may be traversed in a finite number of ways. Starting at 
T and working backwards on the grid, an analagous grid is 
set up which represents at each point the value o f  the 
quantity to be extremized if the optimum trajectory is 
traversed from the corresponding point on the original 
grid to the desired end conditions at T. Upon reaching 
to by this procedure an optimum trajectory is determined 
by following the path back through the first grid defined 
by the smallest values in the second grid. The advantages 
claimed by this approach are similar to those of  the gradient 
approach, since it too is a stepwise numerical procedure. 
Rigorous analytic foundations for this approach have not 
been found to be readily accessible in the literature. 

Certainly approaches other than these four exist, 
and more will be developed. At present, only the first 
three and the corresponding one-and two-point boundary 
value problems are being attacked by Future Projects Branch 
and the associated contractors, as indicated in Figure 2. 

SECT I ON 111. APPLICATIONS 

The results of such efforts usually are seen in the 
form of  t h e  various "deck's!' for trajectory computation 
used by the branch for application in the various fields 
shown in Figure 2. The "deck!! itself will be considered 
to be the systematic carrying out of a given sequence o f  
computations, usually the solution of  a one-point boundary 
value problem. 
iterative schemes must also be programmed for use with the 
decks. Each deck may require a particular type o f  iterative 
process, so that having a deck available does not always 
mean that production can be run on it. The problem involved 
is that of moving from an arbitrary point on an implicitly 
defined surface to a desired point. Various procedures for 
doing this are in use or being developed, including first 
and second order differential correction methods, and the 
ordinary gradient method. 

In order for the decks to be used effectively, 
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The development of a 3 dimensional v a r i a t i o n a l  deck 
has been performed by t h e  Auburn Univers i ty  cont rac tors .  
An i t e r a t i o n  scheme f o r  use w i t h  that deck is  now under 
development i n  the branch. 

A low-thrust  deck is p resen t ly  being developed by 
Grumman A i r c r a f t  Engineering Corporation, by t h e  grad ien t  
approach, i n  both two and three dimensions f o r  a p p l i c a t i o n  
to i n t e r p l a n e t a r y  and near e a r t h  o r b i t  t r a n s f e r .  

\ 
\ 

\ 

k t  

Another deck being experimented w i t h  in-house is a 
ca l cu lus  of v a r i a t i o n s  r een t ry  deck which minimizes t h e  
i n t e g r a l  of the square of the t o t a l  drag. 
a t r i a l  run are shown i n  Figure 8. 

The r e s u l t s  of 

EXAMPLE OF AN APOLLO REENTRY TRAJECTORY 
RUN ON THE EXPERIMENTAL 2-DIM CALCULUS OF VARIATIONS REENTRY DECK 

AI ti tude km 
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501GHii.1 0 
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1 I I 
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FIGURE 8 
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METHODS OF EXPLOITATION OF LARGE-SCALE AUTOMATIC COMPUTERS 

G e n e r a l  
Perturbation 

R A  

BY 

Nolan J. Braud 

Guidance ! 

-+ Mission E q u a t i o n s  i 
I t i  C r i t e r i a  I 

SECTION I. INTRODUCTION 

Some of the  problems encountered i n  s t u d i e s  
and Guidance Theory a r e  q u i t e  extensive and requ 

Formulation 
MSFC 

of Space 
re a jud 

A n a l y t i c  I E m p i r i c a l 1  

I. 1111 I 1 1, 
MSFC 

F l i g h t  
c ious 

u t i l i z a t i o n  of l a r g e  scale computers and computer programs. The 
purpose of t h i s  r epor t  i s  t o  present  some of the  s c i e n t i f i c  d i s c i p l i n e s  
involved i n  achieving numerical r e s u l t s  f o r  such problems. 

Three major problem a reas  a r e  considered fo r  Large Computer 
Exploi ta t ion.  They a r e  a Function Di f f e ren t i a l  Generator, the  
development of a S t a t i s t i c a l  Model and Inves t iga t ions  of Mul t ivar ian t  
Functional Models (see Figure 1). The a reas  of manpower u t i l i z a t i o n  
under the  con t r ac t  "Space F l igh t  and Guidance Theory" a r e  a l s o  
ind ica ted ,  where the  symbols represent ing var ious cont rac tors  a r e  
def ined on page 83 of t h i s  r epor t .  

I LARGE COMPUTER EXPLOITATION I 

D i f f e r e n t i a l  M u l t i v a r i a n t  

Gene r a t 0  r 

I 

Linear 
Programing 

Stat is t ica l  1 M o d e l s  
M S F C  

I C  

l e a s t  Modi f ied 
Squares Least Squares 

I I I 

FIGURE 1 



SECTION 11. DISCUSSIONS 

A. FUNCTION DIFFERENTIAL GENERATOR 

The Function D i f f e r e n t i a l  Generator i s  a computer program t h a t  w i l l  
d i f f e r e n t i a t e  a c e r t a i n  c l a s s  of a lgeb ra i c  and t ranscendental  expressions 
automatically.  
forms a given expression i n  such a way t h a t  i t s  de r iva t ives  are obtained 
by successive app l i ca t ion  of the  bas i c  r u l e s  of d i f f e r e n t i a t i o n  f o r  
elementary funct ions.  It i s  i n t e r e s t i n g  t o  note  t h a t  the  allowable 
c l a s s  of expressions must be closed under the  opera t ion  of 
d i f f e r e n t i a t i o n .  

The program u t i l i z e s  a set  of algorithms which t rans-  

The work on the Function D i f f e r e n t i a l  Generator is being done 
exclusively by the  Universi ty  of North Carolina.  Their procedures 
e n t i t l e d ,  "Analytic D i f f e ren t i a t ion  by Computer," are described i n  
MTP-AERO-61-91 dated December 18, 1961. 

The program operates  i n  the  following fashion a f t e r .hav ing  
designated the  expression t o  be d i f f e r e n t i a t e d  and having chosen the  
va r i ab le s  of d i f f e r e n t i a t i o n .  The f i r s t  s t e p  i s  t o  transform the  
given expression i n t o  a cor re l a t ed  set  of t r i p l e s  (operand-operator- 
operand) such as  A X B. 
the  expression i n  a parenthes is - f ree  form. The next s t e p  is  t o  
determine the de r iva t ive  of each of the  t r i p l e s  o r  rows of the  matrix. 
Then follows a c o l l e c t i o n ,  i n  a co r re l a t ed  fashion,  of these  elementary 
der iva t ives .  Hence, the  de r iva t ives  of an expression a r e  acquired by 
successive appl ica t ion  of the  bas i c  r u l e s  of d i f f e r e n t i a t i o n  f o r  
elementary funct ions.  

This resu l t s  i n  a matr ix  r ep resen ta t ion  of 

The work on t h i s  program i s  not  complete a t  t h i s  time, bu t  a 
preliminary app l i ca t ion  of the procedures has been made t o  determine 
the  coe f f i c i en t s  f o r  the  Taylor 's  Se r i e s  expressions of the  s impl i f ied  
f l a t - e a r t h  ca lcu lus  of v a r i a t i o n s  problem. Only f i r s t  order  de r iva t ives  
w e r e  evaluated; however, t he  r e s u l t s  would i n d i c a t e  a promising f u t u r e  
f o r  a computer program of t h i s  nature .  

B. STATISTICAL MODEL DEVELOPMENT 

The development of S t a t i s t i c a l  Models and t h e  inves t iga t ion  of 

These two a reas  
Mult ivar iant  Functional Models a rose  out  of requirements i n  the  
implementation of the  Path-Adaptive Guidance.Mode. 
of d i sc ip l ine  a r e  being used d i r e c t l y  i n  the  wr i t i ng  of the  guidance 
funct ions of t h e  adapt ive mode. 
funct ion i n  the  Path-Adaptive Guidance Mode a r e  shown i n  Figure 2 ,  
where the  "0" subsc r ip t  r e f e r s  t o  instantaneous condi t ions.  

The na ture  of the s t e e r i n g  and cu to f f  
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. 

NATURE OF THE STEERING AND CUTOFF FUNCTION 
IN THE PATH-ADAPTIVE GUIDANCE MODE 

S T  E L R I N G  

F I G U R E  2 

A S t a t i s t i c a l  Model i s  understood t o  be a c o l l e c t i o n  of quanta t ive  
da t a  t h a t  represent  a physical  s i t ua t ion .  The generat ion of a 
S t a t i s t i c a l  Model t h a t  the  guidance equations a r e  t o  represent  involves 
a f a i r l y  extensive performance and t r a j e c t o r y  inves t iga t ion .  The study 
involves the  development of a manifold of t r a j e c t o r i e s  t h a t  represents  
a l l  poss ib l e  dis turbances which can a f f e c t  vehic les  of the  Saturn c l a s s  
and al low fo r  mission achievement. The t r a j e c t o r i e s  are a l l  determined 
by applying the  theory of the  calculus  of v a r i a t i o n s ,  which r e s u l t s  
i n  the  minimization of fue l  consumed f o r  each case.  T ra j ec to r i e s  
determined under such p r inc ip l e s  r e s u l t  i n  the  specifying of an  
optimum value f o r  the  s t ee r ing  and cutoff  parameters a t  each po in t  
along t h e i r  path.  
c o l l e c t i o n  of such po in t s ,  w e  a r r i v e  a t  the  tabulated values which 
a r e  t o  be  approximated. The development of S t a t i s t i c a l  Models t h a t  
represent  the  q u a n t i t a t i v e  da ta  f o r  the  Adaptive Guidance Mode i s  
done by MSFC, with some as s i s t ance  from Chrysler Corporation. 

By consider ing the volume of t r a j e c t o r i e s  a s  a 
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C. MULTIVARIANT FUNCTIONAL MODELS 

The s tudies  i n  the  a rea  of Mul t ivar ian t  Functional Models a r e  
concerned with the  inves t iga t ion  of var ious curve f i t t i n g  procedures 
t o  determine which i s  prefer red  f o r  our needs i n  guidance funct ion 
wr i t ing .  A t  the  present  time a polynomial form has been t e n t a t i v e l y  
se l ec t ed  f o r  the  representa t ion  of the  guidance funct ions.  The 
expansion of the  series used a r e  ind ica ted  i n  Figure 3 .  
i t  i s  seen t h a t  the instantaneous s t e e r i n g  and cu to f f  funct ions a r e  
expressed i n  a series of terms i n  the  s t a t e  and performance va r i ab le s .  
The coe f f i c i en t s  ( a i )  a r e  constants  t h a t  are t o  be approximated by 
mul t ivar ian t  expressions.  

From t h i s  

EXPANSION OF THE SERIES USED IN THE IMPLEMENTATION 
OF THE PATH-ADAPTIVE GUIDANCE MODE 

9, or t f  = a,, + a , x  + a 2 y  + a 3 i  + a , j  

a s ( m )  F + a , ( F ) +  m a , t  + a 8 x  2 + a , x y  

F a , , y 2  + . . . + a , , x y  + . . . + a , , x ( E )  + . . .. 

F i  2 a33(m)(,,,) + . . . + a , , t  + . . . 

FIGURE 3 

. 
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The Mult ivar iant  Functional Models which have received most 
emphasis are Least Squares, Modified Least Squares and Linear Program- 
ming (see Figure 4 ) .  
accuracy, speed and ease of use. 

These methods a r e  being compared f o r  economy, 

MINIMIZING C R I T E R I A  FOR C U R V E  FITTING. 

L I N E A R  P R O G R A M I N G  

1,; max j p ( t K )  - f ( t , )  I 
K 1, .  .., n, 

L E A S T  S Q U A R E S  

FIGURE 4 

Linear Programming i s  a mathematical technique for f ind ing  an 
optimum so lu t ion  t o  sets of simultaneous equations wi th  more va r i ab le s  
than equat ions,  where the  var iab les  cannot have negat ive values.  
Polynomial approximation problems such a s  those encountered i n  the  
empirical  wr i t i ng  of t he  guidance functions can be  formulated f o r  
so lu t ion  by the  Linear Programming methods. 
be s t a t e d  a s  e i t h e r  a maximization or a minimization problem, and i n  
the  form of an inequal i ty .  Then s lack va r i ab le s  a r e  introduced which 
transform the problem statement in to  sets of equations t h a t  a r e  solved 
by some conventional means of solving simultaneous equations.  The 
Universi ty  of North Carolina i s  conducting the  inves t iga t ions  on Linear 
Programing app l i ca t ion  t o  the  problem of wr i t i ng  

The problem must f i r s t  

guidance equations.  



Least Squares approximations are achieved under t h e  p r i n c i p l e  
t h a t  the  best  value of a quan t i ty  t h a t  can be deduced from a set  of 
observations i s  t h a t  fo r  which the  sum of the  squares  of the  devia t ions  
from the  observed i s  a minimum. 

Figure 4 d isp lays  the minimizing cr i ter ia  t h a t  have been used f o r  
The L 1 c r i t e r i a  r equ i r e s  t h a t  t h e  sum of the  curve f i t t i n g  purposes. 

absolu te  deviat ions be a minimum, whereas the  L m c r i t e r i a  r equ i r e s  t h a t  
the  absolute  value of the  maximum dev ia t ion  be minimized. The minimizing 
c r i t e r i a  under the  least squares p r i n c i p l e  is t h a t  t he  sum of the  squares  
of the  deviat ions should be a minimum. 

SECTION 111. APPLICATIONS 

These c r i t e r i a  have been used to  generate  many guidance polynomials. 
The most favorable r e s u l t s  have been generated by the  method of least  
squares.  
devoted t o  the l e a s t  squares methods than t o  the  o the r  techniques. 
Even though l i n e a r  programming has not  been thoroughly inves t iga t ed ,  i t  
seems t o  o f f e r  d i s t i n c t  advantages i n  the area of f i t t i n g  r a t i o n a l  
polynomials, where more accuracy is  an t i c ipa t ed  as w e l l  a s  a reduct ion  
i n  the  number of terms i n  the  polynomials. 
w i l l  be undertaken by Chrysler Corporation i n  the  near fu ture .  Another 
l i n e a r  programming technique which may o f f e r  some advantage i s  a method 
ava i l ab le  for approximating a polynomial of a given form which r equ i r e s  
t h a t  t he  absolute devia t ion  a t  the  K-th po in t  be  less than a preassigned 
value. I f  the problem cannot be solved under the  spec i f i ed  c o n s t r a i n t s ,  
the  l i n e a r  programming rou t ine  w i l l  i nd ica t e  t h a t  no s o l u t i o n  can be 
obtained. 

This s t e m s  from the  f a c t  t h a t  much more e f f o r t  has been 

This approach t o  the  problem 

The pr ime considerat ion i n  the  area of modified least squares is 
t h a t  of f i t t i n g  the  r e s idua l s .  By t h i s  method a polynomial of a given 
form i s  f i t t e d  by the  conventional l e a s t  squares approach. Then 
succeeding or higher order  terms are f i t t e d  t o  the  r e s i d u a l s  o r  e r r o r s  
of  the  o r ig ina l  polynomial. 
i n  t h i s  fashion, advantage is  gained by t h e  f a c t  that  a smaller set 
of simultaneous normal equations are solved i n  each s t e p  of the  problem. 
Hence, grea te r  accuracy is maintained i n  the  ove r -a l l  s o l u t i o n  t o  the  
p r ob 1 em. 

By approaching the  curve f i t t i n g  problem 

SECTION IV. CONCLUSIONS 

There a r e  many problem a reas ,  comnon t o  almost any mul t iva r i an t  
approximating procedure, t h a t  need t o  be inves t iga ted  before  a f i rm 
con t ro l  w i l l  be  had over the  problem of wr i t i ng  guidance funct ions.  
Some of these problem a reas  are: 
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1. The investigation of existence and uniqueness conditions for 
a function that will represent the guidance functions while minimizing 
the deviations. 

2. The determination of a means of selecting the optimum data 
sampling from a large statistical model. 

3. The problem of weighting the data sampling. . 
4. The use of probability theory. 

5 .  The use of mathematical statistics. 

6 .  The choice of an optimum set of parameters to be represented 
in the p o lyuomia 1. 

7. The means of achieving an optimum solution to a large number 
of simultaneous equations. 

It is generally believed that a stronger control over these 
areas is needed in order to obtain the optimum solution to our problems. 
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PRESENT THEORY A N D  TEXHNIQUES 
APPLIED TO SPACE VEHICLF, PROBLEMS 

BY 

John B. Winch 

SECTION I. INTRODUCTION 

The preceding chapters  i n  t h i s  paperhave presented the 
s c i e n t i f i c  d i s c i p l i n e s  being s t u d i e d  by Future P ro jec t s  
Branch. The purpose of  th is  sec t ion  i s  t o  i l l u s t r a t e  how 
these  d i s c i p l i n e s  are being a'pplied as needed by the br.anch 
i n  the s o l u t i o n  of f l i g h t  mechanical problems. F i r s t ,  t h e  
performance and guidance problems and t h e  br inging toge the r  
o r  i n t e g r a t i o n  of t h e  t o t a l  vehicle  system w i l l  be discussed.  
These problems w i l l  then be f u r t h e r  i l l u s t r a t e d  by app l i ca t ions  
t o  two simple problems per ta in ing  t o  missions which have been 
ass igned  t o  the  Saturn C-1. 

The first a p p l i c a t i o n  is t h a t  of  a range independent 
The second is  a range 

These problems ' are solved by 
i n j e c t i o n  i n t o  a c i r c u l a r  o r b i t .  
independent r e e n t r y  mission. 
i d e n t i c a l  procedures s o  tha t  comparisons can be made. Some 
r e s u l t s  are given, but  they  a r e  no t  intended t o  represent  
any best  o r  f i n a l  s o l u t i o n s .  

SECTION 11. DISCUSSIONS 

The term "System In teg ra t ion"  is used here t o  cover the 
problems involved i n  br inging the var ious  p a r t s  of a vehic le  
system, which have been s tud ied  sepa ra t e ly ,  toge ther .  
Independently, t h e  parts have t h e i r  own optimum so lu t ions ,  
bu t  these s o l u t i o n s  depend a l s o  upon the state of the 
remaining p a r t s  of the  system, so  that a n  ove r -a l l  optimi- 
z a t i o n  problem e x i s t s .  Some of the major p a r t s  of the 
system are: 
stages, s t r u c t u r e s ,  instrumentation, computer, aerodynamic 
c h a r a c t e r i s t i c s ,  cont ro l ,  guidance, and t r a j e c t o r y  shape. 

The system i n t e g r a t i o n  m u s t  be s t u d i e d  as a f f e c t e d  by 
such th ings  as mission, and removable c o n s t r a i n t s .  

propuls ion and p rope l l an t  d i s t r i b u t i o n  between 
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The term "mission" is defined here t o  mean the r e s u l t s  
des i r ed  of t h e  vehic le  f l i g h t .  Examples are: an impact at  
a prescr ibed point  on the l u n a r  su r face ,  a rendezvous w i t h  
a body i n  some prescr ibed o r b i t ,  o r  a s imula t ion  of r e e n t r y  
from a lunar  f l i g h t .  
those cons t r a in t s  which can be e i t h e r  modified o r  removed 
completely. For example: an a l t i t u d e  l i m i t a t i o n  due t o  
aerodynamic hea t ing  considerat ions which can be removed by 
adding heat p ro t ec t ion  ma te r i a l  t o  the  vehic le ,  f l i g h t  'path 
l i m i t a t i o n s  f o r  t racking  which can be removed by adding 
more t racking s t a t i o n s ,  o r  f l i g h t  t i m e  t o  the moon f a r  
manned f l i gh t  which can be removed by adding more l i f e  
support  equipment for t he  a s t ronau t .  Other c o n s t r a i n t s  were 
mentioned i n  the chapte-r on "Calculus of Var ia t ions .  

"Removable cons t r a in t s ' '  are def ined as 

The missions are normally def ined a t  h igher  l e v e l s  of 
the adminis t ra t ion,  and the  removable c o n s t r a i n t s  depend on 
hardware developed i n  o t h e r  branches and d iv i s ions .  The 
missions requested and the  development of hardware depend 
upon an  e a r l y  feedback from the  system i n t e g r a t i o n  s t u d i e s .  
La te r  work r e f i n e s  the  system s o  that the b e s t  poss ib le  
s a t i s f a c t i o n  o f  the mission is obtained w i t h  the  developed 
hardware. 

The evaluat ion of a given haraware conf igura t ion  as 
appl ied t o  a given mission is gene ra l ly  made i n  two phases - 
performance, and guidance. 

To i l l u s t r a t e  t hese  problems, we w i l l  consider  as the 
given mission a lunar  impact. I n  so lv ing  a performance 
problem, it is  conceptual ly  e a s i e r  t o  start a t  the  point  
of m i s s i o n  f u l f i l l m e n t  and work backward. The first step 
then would be t o  generate  a family of optimum t r a j e c t o r i e s  
going from the  moon back t o  the  e a r t h .  The generat ion of 
the  t r a j e c t o r i e s  could be accomplished through the  use of 
the  computational techniques d iscussed  i n  the chapter  on 
"Ce les t i a l  Mechanics - Specia l  Per turba t ions .  These f r e e  
f l i g h t  t r a j e c t o r i e s  would form an envelope around the  e a r t h .  

The next segment of t he  problem would involve the  
generat ion of  a family of optimum powered f l i g h t  t r a j e c t o r i e s  
from the launch s i t e  t o  i n t e r s e c t i o n  w i t h  the fami ly  of 
l una r  t r a j e c t o r i e s .  

by t he  vehicle  and system c o n s t r a i n t s  on the problem. The 
method of generat ion of the optimum powered f l i gh t  t r a j e c -  
t o r i e s  would be the ca lcu lus  of v a r i a t i o n s  procedures 

owered f l i gh t  t r a j e c t o r i e s  might 
include parking o r b i t a l  rendezvous as d i c t a t e d  



discussed  i n  t h e  chapter  on "Calculus of Varia t ions ."  The 
ca l cu lus  of v a r i a t i o n s  technique t o  be used would be s e l e c t e d  
on the basis of the one which was most e a s i l y  adaptable  t o  
the problem t o  be worked. 

The d e f i n i t i o n  of the  mathematical su r f ace  jo in ing  the 
powered f l i g h t  t r a j e c t o r i e s  t o  t h e  l u n a r  t r a j e c t o r i e s  is a 
most d i f f i c u l t  problem, and represents  an  area i n  which a 
large e f f o r t  would be required.  L e t  i t  s u f f i c e  t o  po in t  
out  t h a t  the cutoff po in t  o f  powered f l i g h t  must cons ider  
bo th  propel led f l ight  opt imizat ion and the opt imiza t ion  of 
the midcourse co r rec t ions  to follow. A t r adeof f  s i t u a t i o n  
must be resolved between t h e  two parts of the problem s o  
t h a t  the e n t i r e  system is optimized, no t  j u s t  one segment 
of it. 

The guidance problem may be more e a s i l y  understood by 
s t a r t i n g  f r o m  lift-off and following the f l i g h t  chronologi- 
c a l l y .  Guidance during propel led f l i g h t  could be provided 
by the adapt ive  guidance mode, which involves  the use of 
the  numerical techniques discussed i n  the  chapter  on 
"Large Computer Explo i ta t ion ."  I n  p r i n c i p l e ,  the techniques 
d iscussed  could a l s o  be used i n  represent ing  a l u n a r  t r a j e c -  
t o r y  mission c r i t e r i o n ;  however, i t  would probably be be t te r  
t o  make use of the schemes discussed i n  the chapter  on 
"Celestial Mechanics - General Per turba t ions .  'I 

The technologies  used i n  these s t u d i e s  are s t i l l  i n  a 
state of development. This n e c e s s i t a t e s  s t u d i e s  i n t o  a n  
apparent  problem area before  a s o l u t i o n  t o  the problem is  
formal ly  requested.  For t h i s  reason, s t u d i e s  have been 
i n i t i a t e d  i n  the f i e l d  of t r a j e c t o r y  s t u d i e s  f o r  low thrus t  
veh ic l e s ,  such as would be the  case i f  i o n  propuls ion were 
t o  be used f o r  a s t age .  
poss ib l e  innovation which may f ind  p r a c t i c a l  use i n  a f e w  
years .  Reentry problems are present  now which demand that 
some s t u d i e s  be conducted on optimum f l i g h t  paths  during 
r e e n t r y  i n t o  the atmosphere, s ince  these determine the 
condi t ions  that must be m e t  by the  preceeding phases of 
f l i g h t .  

Variable t h r u s t  is another  phys i ca l ly  

The one sample problem of lunar impact i s  not  the only  
example where a l l  a r e a s  of s c i e n t i f i c  i n v e s t i g a t i o n  d iscussed  
i n  t h i s  paperwould be u t i l i z e d .  A b r i e f  i n spec t ion  of f u t u r e  
missions f o r  Saturn vehic les  shows f l i g h t s  of the fol lowing 
types : 
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1. Earth-Orbit 

2. Lunar impact 

3. Lunar circumnavigation 

4. Sof t  l u n a r  landing 

5. I n t e r p l a n e t a r y  

Each of  the missions l i s t e d  would demand inpu t  from a l l  
of the areas of s c i e n t i f i c  endeavor i n  order that a w e l l  
founded s c i e n t i f i c  a n a l y s i s  of the problems could be 
conducted. 

SECTION 111. APPLICATIONS 

Two problems were chosen f o r ' a p p l i c a t i o n s .  These w i l l  
be designated Case I and Case 11. The guidance a p p l i c a t i o n  
w a s  made using the same terms and the  same p a t t e r n  of s e l e c t -  
i n g  poin ts  f o r  each part of both cases .  
b r ing  out t h e  e f f e c t s  of changes i n  mission c r i te r ia  formu- 
l a t i o n .  It is planned t o  br ing  out a note  covering more 
detai ls  a t  a la ter  da te .  This l a t e r  note  w i l l  p resent  
optimum fits as t o  the s e l e c t i o n  of; terms and po in t s .  

This w a s  done t o  

A. THRUST AND WEIGHT DATA 

The Saturn C-1, Block I1 veh ic l e s  are two stage configu- 
r a t i o n s .  The f irst  stage (S-I)  is powered by eight  188~ l b  
engines,  f o u r  of which are gimbal mounted f o r  vec to r  t h r u s t  
con t ro l .  The t h r u s t  and weight c h a r a c t e r i s t i c s  and the 
mass d i s t r i b u t i o n  data were obtained from the Sa turn  Design 
C r i t e r i a  Book dated May 12, 1961. 

B. CASE I 

For t h i s  case the mission c r i t e r i a  was assumed t o  be 
that  of  i n j e c t i o n  i n t o  a c i r c u l a r  o r b i t .  No requirement 
w a s  assumed f o r  t he  plane of the o r b i t  o r  the p o s i t i o n  of 
the vehicle  i n  the  o r b i t .  T h i s  is referred t o  as range 
independent i n  the  sense of t r a j e c t o r y  opt imizat ion.  The 
c i r c u l a r  o r b i t s  desired were assumed t o  be one, two, and 
three hundred n a u t i c a l  m i l e s  above the  su r face  of the earth. 

, 



The performance problem i s  solved first.  I n  doing t h i s ,  
the first s t a g e  t r a j e c t o r i e s  were shaped s o  as to f avor  a 
seven engine a c c e l e r a t i o n  h i s t o r y  from l i f t - o f f .  T h i s  
c o n s t r a i n t  w a s  imposed by r i g i d  body c o n t r o l  cons idera t ions .  
Subjec t  t o  the c o n s t r a i n t s  given, the  c r i t e r i a  used t o  
s e l e c t  a first s t a g e  tilt program w a s  that the second s t age ,  
assuming i d e a l i z e d  performance, d e l i v e r  m a x i m u m  cu to f f  weight 
i n t o  the s p e c i f i e d  i n j e c t i o n  condi t ions.  
and 7/7 w i l l  be used t o  designate  t r a j e c t o r i e s  f o r  which the 
f i r s t  stage has simulated a f l i g h t  w i t h  8 and 7 engines,  
r e spec t ive ly ,  following the  tilt program j u s t  descr ibed.  
These two cases  def ine the l i m i t s  of the volume of first 
s t a g e  t r a j e c t o r i e s  f o r  p r a c t i c a l  purposes. The second 
s t a g e  f l i g h t  of t h i s  two s t a g e  missile is above t h e  atmos- 
phere. Therefore, any desired angle  of a t t a c k  can be 
obtained without undue aerodynamic fo rces  r e s t r a i n i n g  t h e  
missi le .  Ful l  guidance is  used during the  second s t a g e . i n  
a l l  cases .  This sample problem w a s  computed consider ing 
in-plane f l i g h t  only. The same techniques used f o r  t h i s  
problem may be used t o  solve out-of-plane cases.  

The no ta t ion  8/7 

I n  so lv ing  t h e  guidance problem, the s t e e r i n g  equat ions 
were developed by empir ica l  methods. T h i s  development w a s  
started af te r  the perfopnance problem had been solved.  The 
first s t e p  i n  the empir ica l  method is t o  establish a 
s t a t i s t i c a l  model. Reference is made t o  the s e c t i o n  on 
"Large Computer Explo i ta t ion .  " The s ta t i s t ica l  model was 
e s t a b l i s h e d  by computing a family of optimum t r a j e c t o r i e s  
which s a t i s f y  the mission c r i t e r i a .  T h i s  family of 
t r a j e c t o r i e s  covered the  vol*mc of  space through which any 
veh ic l e  might be expected to fly, up t o  a given p r o b a b i l i t y  
of occurrence.  The "poin ts"  ( t o  be def ined  below) of these  
t r a j e c t o r i e s  make up t h e  s t a t i s t i c a l  model. 

The t r a j e c t o r i e s  were computed using a two dimensional 
space-fixed Cartesian coordinate system. The o r i g i n  w a s  
chosen as the c e n t e r  of t he  ea r th .  The p o s i t i v e  y-axis 
passes through the  launch s i t e .  The x-axis is i n  the plane 
of f l i g h t  and is p o s i t i v e  down range. Both p o s i t i o n  and 
v e l o c i t y  measurements were assumed t o  be a v a i l a b l e ,  trans- 
formed i n t o  t h i s  system. The term "poin t"  (as used i n  the 
s t a t i s t i c a l  model) i s  def ined as t h e  parameters which a f f e c t  
the desired t h r u s t  angle  f o r  an optimum- t r a j e c t o r y .  These 
parameters are p o s i t i o n  (X), ve loc i ty  (z), and engine 
performance data (F m, &/m, e t c . ) .  F/m is the  r a t i o  of 
t h r u s t  to mass. m / m is the r a t i o  of flow rate t o  mass. 
The th rus t  angle  (x) is defined as the angle  from the y-axis 
t o  the long axis of the mis s i l e .  The d e s i r e d  tilt angle (x) 
is  assumed t o  be a func t ion  of the poin t  i n  phase space.  
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Thus, 

The s t a t i s t i c a l  model then  i s  comprised of po in t s  of 
the space and the i r  related x value.  

The s ta t i s t ica l  model is composed of a n  a r b i t r a r y  
sampling of po in t s  from the phase space.  
was made by s e l e c t i n g  p o i n t s  on 32 t r a j e c t o r i e s  a t  15 
second i n t e r v a l s  from 135 t o  585 seconds and at  5 second 
i n t e r v a l s  from 585 seconds t o  c u t o f f .  The th i r ty- two 
t r a j e c t o r i e s  were s e l e c t e d  i n  the fol lowing manner. 
T r a j e c t o r i e s  f o r  the f i rs t  s t a g e  were run f o r  two cases .  
These cases were 7/7,  and '8/7.  
between these extremes. Second s t a g e  t r a j e c t o r i e s  were 
computed from these  f o u r  i n i t i a l  po in t s ,  w i t h  the  fo l lowing  
second stage condi t ions :  f irst ,  s tandard  ( o r  expected)  
second s tage  perforhanee; second, v a r i a t i o n s  i n  thrust  
l e v e l  o f  k 2%; and t h i r d ,  v a r i a t i o n s  i n  s p e c i f i c  impulse 
of k 4 seconds. This established a t o t a l  of twenty t r a j e c -  
t o r i e s .  Twelve a d d i t i o n a l  second stage t r a j e c t o r i e s  were 
computed w i t h  s tandard  performance and i n i t i a l  state coordi-  
n a t e s  var ied between the 8/7 and 7/7 end po in t s .  
sampling r e s u l t e d  i n  a t o t a l  of about 1220 po in t s  of the phase 
space.  
comparison purposes. 

T h i s  sampling 

Two p o i n t s  were i n t e r p o l a t e d  

T h i s  

T h i s  procedure was used throughout the  s tudy  f o r  

A few t y p i c a l  polynomials were a r b i t r a r i l y  s e l e c t e d  
f o r  t h i s  p re sen ta t ion .  These polynomials conta in  7, 8, 28, 
36, 47, and 57 terms. The sevev term polynomial contained 
only f i r s t  order  terms without m/m; the e i g h t ,  a l l  first 
o rde r  terms; and t h e  47 and 57, s e l e c t e d  first, second, 
and t h i r d  o rde r  terms. Again, the same terms were used 
for a l l  parts of t h i s  s tudy.  It should be noted that t h i s  
s e l e c t i o n  i s  not t h e  best. A l l  p o s s i b l e  s t e e r i n g  polynomials 
should be considered. The computer capac i ty  d i c t a t e s  that 
terms higher than  t h i r d  o r d e r  may not  be used. 
120 terms up t o  and inc luding  t h i r d  order ,  and poss ib l e  
combinations of t hese  terms. Although many of  these poss i -  
b i l i t i e s  may be e l imina ted  by inspec t ion ,  t h e  problem of 
s e l e c t i n g  a best polynomial f o r  a s p e c i f i e d  mission i s  s t i l l  
a tremendous task. 

There are 



The measure of e r r o r  of the s t e e r i n g  func t ion  i s  hard 
to determine. Er rors  r e s u l t  because the s t a t i s t i c a l  sample 
only g ives  a d i s c r e t e  representa t ion  of the phase space, 
and a l s o  cannot be f i t  exac t ly .  Two e f f e c t s  o f  e r r o r s  i n  
the s t e e r i n g  func t ion  may be noted. The f i rs t  i s  that the  
mission c r i t e r i a  cannot be m e t  e x a c t l y  (except f o r  a mission 
dependent upon one func t ion  which inc reases  monotonically 
w i t h  t i m e ) .  The second is ,  t h a t  more than  the  t h e o r e t i c a l  
minimum of p rope l l an t s  is consumed. These e f f e c t s  may be 
measured on each t r a j e c t o r y  computed under s imulated a c t i v e  
guidance. Each set of assumptions f o r  a s imula t ion  r e s u l t s  
i n  a corresponding value f o r  mission achievement e r r o r  and 
a d d i t i o n a l  p rope l l an t s  consumed. By choosing s e v e r a l  se ts  
of assumptions from the s t a t i s t i c a l  model which was f i t ,  
and combining the r e s u l t i n g  set  of e r r o r s  and a d d i t i o n a l  
p r o p e l l a n t s  required,  some measure of the e r r o r  of f i t  
f o r  that p a r t i c u l a r  s t e e r i n g  func t ion  can be computed. 
I n  t h i s  app l i ca t ion ,  only the l i m i t i n g  sets of assumptions 
(8/7 and 7/7) were used t o  check the s t e e r i n g  func t ions  i n  
t h i s  way. Detailed a n a l y s i s  of errors was not considered 
economical f o r  t h i s  app l i ca t ion .  

Another measure of  accuracy of the s t e e r i n g  func t ion  
is  the RMS (root-mean-square) e r r o r  w i t h  r e spec t  t o  the 
p o i n t s  of the s t a t i s t i c a l  model. This c r i t e r i a  is  used 
mainly as a mathematical guide, s i n c e  it depends upon the 
p a r t i c u l a r  choice of  po in t s  for the  s t a t i s t i c a l  model, and 
i s  more i n  the  na ture  of a necessary r a t h e r  than s u f f i c i e n t  
requirement. That is ,  a small RMS is necessary f o r  a good 
s t e e r f r g  func t ion ,  but does not guarantee one that meets 
the  p r a c t i c a l  requirements of the problem. 

t o  i n v e s t i g a t e  the  e f f e c t  o f  leaving out t h i s  parameter. 
There is some doubt as t o  the accuracy and r e l i a b i l i t y  of 
t he  measurement of  t h i s  term from t h e  engineer ing p o i n t  
of view. No firm conclusion as t o  the  e f f e c t  of dropping 
th i s  term may be deduced from t h i s  study. However, some 
idea as t o  the e r r o r  caused may be i n f e r r e d  from these 
s p e c i a l  cases.  It maybementioned that i n  range and t i m e  
dependent cases fi/m may play a more important r o l e  i n  the 
s t e e r i n g  equat ions.  

The two polynomials without ($m) terms were generated 

The cutoff  equat ion used i n  t h i s  s t u d y  caused cu to f f  
t o  occur when the des i r ed  ve loc i ty  w a s  reached. This 
express ion  was used s o  that e r r o r s  would appear  i n  pa th  
angle  and a l t i t u d e  only. Also,  it enables  a measure of the  
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steering equation independent of the cutoff equation t o  be 
made. Later studies will integrate the errors caused by 
both cutoff and steering equations. 

Tables 1 through 3 present the coefficients of the 
first order terms of the six steering polynomials discussed 
previously. 

TABLE 1 

SATURN C - 1: 100 N. M. RANGE -INDEPENDENT MISSION 

34030’1 

2.33 
.72 

C 
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a ,  
constant 

1. 8Terms 1stOrder - 1 2 5 6  
2. 3 6  Terms 

1st & 2nd Order 2 8 2 1  
3. 47 Terms lst, 2nd 

&Selected 3rd 11953 
4. 57 Terms lst, 2nd 

& Selected 3rd 5562 

5. N0.l W/O ~&h - 1 2 6 8  
6. N0.2 ~/~mhTenns 1 5 1 8  

TABLE 2 

a 1  a ,  a 3  a ,  a 5  a (  a l  RMS 
x Y X y F/m t m/m Error 

285.3 2173 -42.84 25.02 4.114 -52.74 -67.19 1.92 

- 4 0 8 7  -1506 699.7 133.7 62.52 742.9 - 2 1 2 4  .43 

- 2 6 7 2  - 4 1 0 9  25.87 86.20 -1589  1 9 4 6  56332 .35 

989.0 - 1 4 3 8  -3050  -144.6 1 7 3 6  0 -102790 .12 
281.5 2 1 8 5  -39.45 26.15 2.287 -53.06 0 1.94 

- 4 2 5 6  - 1 2 9 1  846.0 287.0 118.2 673.1 0 .59 

SATURN C - 1  200 N. M. RANGE-INDEPENDENT MISSION 

TABLE 3 

SATURN C - 1: 300 N. M. RANGE-INDEPENDENT MISSION 

27.58 3.187 -46.89 -22.47 1.76 A 
-387.2~ -3.0671 501.21 -66201 Jr 

10.33 -994.7 1 4 6 2  3 6 5 4 4  

-198.51-334.11 0 1 19511 
27.83 2.623 -46.80 0 

-275.0 -51.26 609.2 0 



I n  the case o f  polynomials 2, 3, 4, and 6, the c o e f f i c i e n t s  
of the higher o rde r  terms are no t  shown. A genera l  tendency 
which is  displayed is t h a t , f o r  a given polynomial, the RMS 
e r r o r  decreases as i n j e c t i o n  a l t i t u d e  is increased.  T h i s  
tendency is  probably a r e s u l t  of the f a c t  that  the volume 
of i n i t i a l  condi t ions is decreased f o r  increased  i n j e c t i o n  
a l t i t u d e .  T h i s  phenomenon r e s u l t s  from the  manner i n  which 
t h e  l i m i t i n g  t r a j e c t o r i e s  were generated,  and is a phys ica l ly  
r e a l i s t i c  s i t u a t i o n .  

N u m b e r  o f  Terms Used M o t o r s  W t  ( I b )  A W  
f o r  S t e e r i n g  F u n c t i o n  I n  Booster C o f  V 1 1  Run (Ib) 

I 

Trajec tory  s imula t ions  were made on the l i m i t s  of the 
volume f i t t e d .  The r e s u l t s  of these s i rn i l a t ions  are pre- 
sen ted  i n  Tables  4 through 6. 

AS A Y  
( d e g )  ( k m )  

1. 8 Terms 
1st O r d e r  

2. 36 T e r m s  

a/7 35393 35558 165 3 9  4.9 
V 7  35926 35822 - 1 0 4  e.67 -3.7 

-. 

1st  & 2 n d  O r d e r  

3. 47 Terms l s t ,  2nd i? 
Selec ted  3 r d  Order  

4. 57 Terms l s t ,  2nd & 
Se lec ted  3 r d  O r d e r  

8/7 35393 35438 45 10 2 
'1/7 35926 35932 6 .o 1 -3 

8/7  35393 35412 18  .04 .4 
'1/7 35926 3 5 9 2 1  - 5 0 .4 

&/7 35393 35418 25 .O 6 - .2 
5. No. 1 w i t h o u t  

m/m T e r m s  

V7 35926 35936 10  .o 5 - .1 
s /7  35393 35564 -29 .4 0 5.1 

6. No. 2 w i t h o u t  
m/m ' Ter m s 

7 / 7  35926 35816 -110 -.68 -3.4 

35393 35428 35 48 .5 
'1/7 35926 35926 0 -.02 -.3 



TABIX 5 
SATURN C-1: 200 N.M. RANGE-INDEPENDENT CIRCULAR MISSION 

- 
( Ib)  

Run 

32843 
32811 

32815 
32153 

32812 
32149 

32816 
32756 

32845 
32814 

32811 
32151 

1. 8 T e r m s  
1 s t  O r d e r  

A W  
( I b )  

3 1  
6 1 

3 
-3 

0 
-1 

4 
0 

3 3  
5 8  

5 
1 

I l / l  I 32156 
2. 36  Terms I I 

Selec ted  3 r d  O r d e r  

5. No. 1 w i t h o u t  
m/m T e r m s  

6. No. 2 w i t h o u t  
m/m T e r m s  

1 s t  8 2 n d  O r d e r  1 :; I :;U:: 

3. 4 7  Terms l s t ,  2 n d  8 
Selected 3 r d  Order  W 7  32812 

Wl 32812 
7/1 32156 

&/l 32812 
Vl 32756 

8/l 32812 
1/1 32156 

I l / l  I 32756 
4. 5 1  Terms 1st. 2nd & I  I 

N u m b e r  o f  T e r m s  Used 
f o r  S t e e r i n g  F u n c t i o n  

1. 8 T e r m s  
1 s t  O r d e r  

2. 3 6  T e r m s  
1 s t  8 2 n d  Order 

3. 4 1  T e r m s  ls t ,2nd& 
S e l e c t e d  3rd O r d e r  

4. 57 T e r m s  ls t ,2nd & 
S e l e c t e d  3rd O r d e r  

M o t o r s  W t  ( I b )  A W  A$- 
I n  Booster C o f  V 1 Run ( I b )  ( d e g )  

a/ i  29486 29335 -151 6 2  

8/1 29486 29481 -5 41 
l / l  28561 28558 -9 .o 1 

8/1 29486 29481 1 -41 
1 / 1  28561 28569 2 -.02 

8/1 29486 29481 -5 1 2  

1 / 1  28561 28803 236 -SO 

.03  
0 

.4 

.2 - 

-.69 -2.6 

.04 
-. 03 

TABU3 6 
SATURN C-1: 300 N.M. RANGE-INDEPENDENT CIRCULAR MISSION 

I l / l  I 28561 I 28566 I -1 I 1 0  
5. No. 1 w i t h o u t  1 I I I I 

No. 2 w i t h o u t  
m/m T e r m s  29486 

A Y  
( k m )  

4.9 - 2.6 
0.3 
0.3 

0.0 
0.1 

0.2 
0.0 

4.9 
-2.6 
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The second mission inves t iga t ed  was a r e e n t r y  f l i g h t .  
T h i s  mission w a s  assumed to be independent of range i n  t h e  
same sense def ined previously.  Cons t ra in ts  were imposed 
on the f irst  s t a g e  f l i g h t  i n  the same manner as discussed 
before ;  that i s ,  the  t ilt  program w a s  shaped f o r  seven 
engine performance. The S-IV (upper s t a g e )  cu tof f  po in t  
was constrained by r equ i r ing  t h a t  cu to f f  occur a t  an 
a l t i t u d e  of 120 km and a pa th  angle  of 94 degrees.  
o rder  t o  a s su re  t h e  m a x i m u m  r e e n t r y  v e l o c i t y  achievable  
by the  s tage ,  f u e l  dep le t ion  was assumed i n  every case.  

I 

I n  

The devia t ions  l i s t e d  were obtained by comparison of the 
nominal i n j e c t i o n  condi t ions  ( a l t i t u d e  = 100, 200, and 
300 n a u t i c a l  miles;  l o c a l  c i r c u l a r  ve loc i ty ;  90 degree 
pa th  angle)  w i t h  the  t r a j e c t o r y  s imula t ions .  Cutoff w a s  
assumed t o  be given a t  t h e  nominal v e l o c i t y  l e v e l ,  s o  that  
no ve loc i ty  e r r o r  i s  present  i n  any of t he  cases .  All 
hardware was assumed t o  func t ion  p e r f e c t l y .  A comparison 
i s  made of t h e  cutoff  weight obtained by ca l cu lus  of 
var i a t ions  optimized t r a j e c t o r i e s  from the swe first s t a g e  
end poin ts  and t h e  t r a j e c t o r y  s imula t ions  us ing  polynomial 
s t e e r i n g  func t ions .  I n  some cases  i t  i s  observed t h a t  t h e  
polynomial program de l ive red  a h igher  weight t o  the 
reference v e l o c i t y  l e v e l  than  the  ca l cu lus  of v a r i a t i o n s  
t r a j e c t o r y .  T h i s  ga in  i s  the  r e s u l t  of the dev ia t ion  i n  
the  o ther  end condi t ions,  due t o  t h e  inaccurac ies  i n  t h e  
s t e e r i n g  func t ion .  The ca lcu lus  of v a r i a t i o n s  program 
w i l l  always d e l i v e r  a h igher  payload i f  i d e n t i c a l  end 
condi t ions are achieved. 

C .  CASE I1 

The r e s u l t s  obtained from t h i s  s tudy  a r e  shown i n  Tables 
7 and 8. 

I n  Table 7 i t  w i l l  be observed that the  RMS e r r o r  goes 
up t o  0.45 degrees f o r  the 57 term polynomial as compared 
w i t h  0.32 degrees f o r  t h e  47 term polynomial and the  f a c t  
t h a t  t h e  s e l e c t i o n  of terms i n  t h e  polynomial can be more 
important than  the  number of terms. It a l s o  shows tha t  a 
given choice of terms for t he  polynomial may be good f o r  
one mission and not  good for another .  The 57 term polynomial 
was se l ec t ed  on the  basis of i t s  performance f o r  t h e  o r b i t a l  
missions.  

I 
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8 Selected 3rd 
5.No. 1 $ I$II Terms 
6 . N o . 2 d  mhTerms 

TABU 7 

SATURN C-1: REEN.TRY TEST FLIGHT 

-21893 - 329.5 6390-422.8  -31.95 4 0 6 3  0 - - 2 3 1 8 4  A 5  
- 1 1 3 9  3 0 5 8  205.5 -42.72 23.61 2.235 - 56.08 0 1.45 
-921.0 616.4 304.9-273.1 -115.4-110.9 -199.2 0 51 

\coefficients of1 

Number  o f  Terms Used M o t o r s  
f o r  S t e e r i n g  F u n c t i o n  I n  B o o s t e r  

Used for 

1st 8 2nd Order 
3.47 Terms lst, 2nd 

A Alt A V  A3 
( k m )  ( m / s e  c )  ( d e g )  

4.57 Terms lst, 2ndl 

I 7/7 

I l Y 7  

I v7 

2. 3 6  Terms 

3. 47 Terms l s t ,  2nd & I  

4. 57  Terms 1st. 2nd 811 

305.6 201.3 -46.67 23.23 4.063 -53.51 -64.13 1.42 

- 1.56 7.1 3 - .36 

- 2 2  58 2 J 1 - 3 9  6.0 1 61 

- .65 5.84 61 - .81 6.8 2 .o 0 

- 1.36 6.7 8 6 3  

-239.8 -917.1 - 781.3 -60.60 223.1 601.1-13005 3 8  

5. N o .  1 w i t h o u t  
m/m T e r m s  

6. N o .  2 w i t h o u t  
m/m T e r m s  

- 1765 -45.98 - 70.58 68.60 628.3 - 75.47-24483 .32 

v 7  1.08 3 6  0 6 4  

w 7  4.4 1 7.56 .16 
v 7  - 121 6.4 2 - 3 6  

- .10 5 2  1 - .01 
- 1 7  5.6 1 - .04 

w 
7'7 

TABLE 8 

SATURN C-1: REENTRY TEST FLIGHT 

1. 8 Terms 
1st Order I 8/7 I 4.46 I 6.74 1 .13 

1st Et 2nd Order I 8 / 7  

Selected 3rd O r d e r  I 8/7 

S e l e c t e d  3 r d ' O r d e r  I &/7 
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SECTION IV. CONCLUSIONS 

The r e s u l t s  presented demonstrate the f l e x i b i l i t y  of 
the adapt ive guidance mode. By us ing  a s u f f i c i e n t  number 
of terms i n  the s t e e r i n g  polynomial, any reasonable  accuracy 
of i n j e c t i o n  may be obtained, as r equ i r ed  by the mission 
c r i t e r i a .  Conversely, i f  the accuracy which i s  d e s i r e d  f o r  
a given mission is  not  g r e a t ,  a polynomial having only a 
small number of terms can be developed which w i l l  produce 
i n j e c t i o n  wi th in  the to l e rances  given. I n  both  cases  t h e  
accuracy of the t h e o r e t i c a l  guidance mode may be c l e a r l y  
separa ted  f r o m  hardware cons idera t ions ,  bo th  i n  terms of  
l o s s  of  opt imizat ion and inaccuracy of mission f u l f i l l m e n t .  
Thus, the e f f e c t  of a n y l i m i t a t i o n s  o r  approximations can 
be s tudied .  

Later  pub l i ca t ions  w i l l  inc lude  t h e  r e s u l t s  of s t u d i e s  
using more ref ined.  polynomials and techniques.  Also more 
advanced and complex missions,  such as o r b i t a l  rendezvous, 
w i l l  be analyzed. 
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COORDINATION OF IN-HOUSE AND CONTIiACTOR EFFORTS 
IN THE DEVELOPMENT OF 

GUIDANCE AND SPACE FLIGHT THEORY AND TECHNIQUES 

77 

David Schmieder 

SECTION I. INTRODUCTION 

We ma summarize the work of Future Projects Branch by 
notin?, (19 the limitations on the procedures now in common 
use, 2) what work is now being done and is planned to be 
done to remove such limitations, and (3) how it is planned 
to accomplish this through the coordination of in-house and 
contractor activities under the contract, "Guidance and 
Space Flight Theory." 

SECTION 11. DISCUSSIONS 

A. LIMITATIONS 'ON PRESENT PROCEDURES 

Perhaps the most frequently solved problem is the one- 
point boundary value problem. Performance surveys, control 
studies, and guidance error analyses require the solution 
of this problem; and it is also used in the iterative 
solution of the two-point boundary value problem. These 
solutions usually involve stepwise integration procedures 
which are limited in accuracy by truncation or round-off 
errors and in economy of operation by over pessimistic 
error approximations. 

The solution of the two-point boundary value problems 
encountered in our work is limited almost entirely to the 
iterative methods using one-point solutions. Thus, in 
addition t o  having the limitations mentioned for the one- 
point problem, we have the difficulties associated with 
numerically finding the inverse of a function at an implicitly 
defined point. Also, it is difficult to know definitely when 
all solutions of interest have been found. 

The computer time associated with such solutions is 
important for economy reasons in preliminary design work on 
the ground. The importanceof time as a limitation of the 
method increases when the onboard computations for the 
adaptive guidance mode are considered. 



78 

The space t r a j e c t o r y  computation procedures now i n  
gene ra l  use are " s p e c i a l  pe r tu rba t ion"  s o l u t i o n s  and thus  
a r e  expressed as one-point boundary value problems. Thus, 
wi th in  a c e r t a i n  accuracy, t h e  space t r a j e c t o r y  r e s u l t i n g  
from a given cu to f f  po in t  can be computed, and the cutoff  
po in t s  necessary t o  achieve desired space t r a j e c t o r i e s  can 
be i t e r a t e d  f o r ;  bu t  the mission c r i t e r i a  formulat ion needed 
f o r  the adapt ive guidance mode is  no t  suppl ied.  

Since t h e  methods mentioned s o  far  are mostly numerical, 
they a l s o  c a r r y  the disadvantage of r equ i r ing  a l o t  of 
experience by the  u s e r  i n  o rde r  t o  decrease the man-hour 
t i m e  f o r  so lu t ions .  T h i s  makes it  d i f f i c u l t  t o  ob ta in  fast 
r e s u l t s  t h a t  are sometimes needed as, f o r  example, when 
changes i n  hardware c h a r a c t e r i s t i c s  a r e  being considered. 

I n  add i t ion  t o  these l i m i t a t i o n s ,  it has been found t o  
be more e f f e c t i v e  t o  write "decks" f o r  machine computation 
s p e c i f i c a l l y  for 'problems as needed f o r  the development of 
t o o l s  and f o r  t he  a p p l i c a t i o n  t o  var ious missions as they  
come down from adminis t ra t ion ,  u s u a l l y  wi th  an a s soc ia t ed  
time schedule. Thus, we a r e  always l i m i t e d  t o  the s t a t e  of 
approximation t o  the  phys ica l  model that e x i s t s  i n  decks 
p r e s e n t l y  checked out. I n  o r d e r  t o  push back these  l i m i t a -  
t i o n s  as needed, t he  fol lowing p r o j e c t s  a r e  being c a r r i e d  
on in-house. 

B. IN-HOUSE PROJECTS 

Special  Per turba t ion  techniques f o r  improving t h e  one- 
poin t  boundary value s o l u t i o n  f o r  space t r a j e c t o r i e s  have 
been under development f o r  some time and t h i s  work w i l l  
continue.  Also t o  be continued are: s t u d i e s  toward a non- 
i t e r a t i v e  type s o l u t i o n  t o  the  two-point boundary value prob- 
lem that r e s u l t s  from the c l a s s i c a l  ca l cu lus  of v a r i a t i o n s ;  
t h e  func t iona l  approximation of t abu la t ed  mul t iva r i ab le  
func t ions ,  as used t o  represent  a volume of two-point 
boundary value s o l u t i o n s  der ived i t e r a t i v e l y ;  and a genera l  
pe r tu rba t ion  s o l u t i o n  t o  space t r a j e c t o r i e s  f a l l i n g  under 
t h e  r e s t r i c t e d  three-body problem. The l a t t e r  is  being done 
w i t h  t he  cooperation of D r .  Schulz-Arenstorff' of Computation 
Divis ion.  

Our work t o  da t e  w i t h  t he  ca lcu lus  of v a r i a t i o n s  has 
been based mainly on the  Euler-Lagrange necessary condi t ions .  
Inves t iga t ions  are being s t a r t e d  toward an examination and 
app l i ca t ion  of  s u f f i c i e n c y  condi t ions found i n  t h e  theory.  

e 

c 
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The number of i t e r a t i v e  so lu t ions  of two-point boundary 
value problems to be made has been inc reas ing  cont inua l ly .  
Thus, a s tudy  has been i n i t i a t e d  t o  ob ta in  quicker,  b e t t e r  
con t ro l l ed ,  and more un ive r sa l ly  app l i cab le  rou t ines  f o r  
i t e r a t i n g  s o l u t i o n s  to t h i s  problem. 

Ex i s t ing  ca lcu lus  of v a r i a t i o n s  decks a r e  being extended 
t o  include some h igher  ordered pe r tu rba t ion  terms, such as 
t h e  g r a v i t y  a s soc ia t ed  w i t h  an o b l a t e  earth, and atmosphere. 
Also, experimental  ca lcu lus  of v a r i a t i o n s  decks are being 
s e t  up for use i n  r e e n t r y  s tud ie s .  

These in-house s t u d i e s  a re  complemented by many s t u d i e s  
which have been contracted out  t o  i n d u s t r i a l  and u n i v e r s i t y  
groups. 

C .  OUT-OF-HOUSE PROJECTS 

I n  the  ca lcu lus  of va r i a t ions ,  Auburn Univers i ty  has 
w r i t t e n  a t h r e e  dimensional deck and, t oge the r  w i t h  General 
E l e c t r i c  of Phi ladelphia ,  w i l l  add f u r t h e r  fo rces  and s tudy  
t h e  opt imiza t ion  of dive t r a j e c t o r i e s  w i t h  var ious types of 
c o n t r o l  as app l i cab le  to t he  present  Apollo concept. 
Vanderbi l t  Univers i ty  is  beginning a t h e o r e t i c a l  s tudy  of 
t r a n s v e r s a l i t y  condi t ions  f o r  discont inuous a r c s  and the 
s u f f i c i e n c y  condi t ions of t he  c l a s s i c a l  approach. G-n 
i s  developing a low-thrust deck i n  two and t h r e e  dimensions 
f o r  p l a n e t a r y  and near  earth o r b i t  t r a n s f e r .  The g rad ien t  
approach t o  t h e  v a r i a t i o n a l  ca lcu lus  is appl ied .  It may be 
noted t h a t  although some prob1em of the i t e r a t i v e  two-point 
boundary problem are eased by that  method, the disadvantage 
of a necessary experience f a c t o r  is s t i l l  present .  

The genera l  pe r tu rba t ion  s o l u t i o n  t o  the  three-body 
problem, f o r  a p p l i c a t i o n  t o  lunar  f l i gh t s ,  is  being a t t acked  
f r o m  d i f f e r e n t  po in t s  of view by General E l e c t r i c  and the 
Univers i ty  of Kentucky. 

The approximation of a tabula ted  func t ion  of s e v e r a l  
v a r i a b l e s  by means of a formal func t ion  e a s i l y  evaluated 
on a n  onboard computer is  rece iv ing  a t t e n t i o n  by Chrysler  
Corporation Missile Divis ion,  the Un ive r s i ty  of North 
Carolina,  and Northeastern Louisiana S t a t e  College. North 
Carol ina is  a l s o  developing an automatic func t ion  d i f f e ren -  
t i a t o r  f o r  poss ib l e  use i n  a l l  of t h e  problems. 
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Several  s t u d i e s  a r e  hoped t o  be i n i t i a t e d  soon i n  

of o r b i t a l  transfers w i t h  high t h r u s t  engines are planned 
f o r  Grumman and United Aircraft. United A i r c r a f t ,  General 
E l e c t r i c ,  and Raytheon would s t u d y  t h e  r e t u r n  from o r b i t a l  
launch complex and Bendix would s tudy  t h e  docking maneuvers. 
These surveys would be designed t o  show the e f f e c t s  of 
hardware r e s t r i c t i o n s ,  ove r -a l l  c a p a b i l i t i e s ,  and t h e  over- 
a l l  optimum so lu t ions .  

connection w i t h  o r b i t a l  rendezvous. Survey-type s t u d i e s  1 

1 

It is planned f o r  Gnunman t o  develop s t e e r i n g  equat ions  
f o r  a lunar  mission, and Chrysler  f o r  an earth sa t e l l i t e  
mission. 

We do not  have the manpower t o  a t t a c k  a l l  of t hese  
problems in-house, s o  that  f o r  t imely s o l u t i o n s  and a 
hea l thy  r e l a t i o n s h i p  w i t h  a r ep resen ta t ion  of t h e  i n d u s t r i a l  
and u n i v e r s i t y  capac i ty  of the na t ion ,  w e  feel  t h e  con t r ac tua l  
approach to these problems w i l l  prove t o  be a u s e f u l  one. 

D. COORDINATION OF IN-HOUSE AND OUT-OF-HOUSE ACTIVITIES 

I n  order  t o  coordinate  the in-house and out-of-house 
a c t i v i t i e s ,  bi-monthly meetings have been set  up as informa- 
t i o n  exchange po in t s .  A t  t he se  meetings both proolems and 
so lu t ions  a r e  presented f o r  comment and c r i t i c i s m  by a l l  
members. Smaller groups m e e t  f o r  more detai led exchange of 
information i n  the var ious s p e c i a l  f i e lds .  

T h i s  arrangement produces an in-house load of  keeping 
con t ro l  over t h e  con t r ac to r s ,  t h e i r  production and plans 
for f u t u r e  work. To meet t h i s  problem, c e r t a i n  members of 
Future Pro jec ts  Branch have been designated as s p e c i a l i s t s  
i n  a given f i e l d .  These s p e c i a l i s t s  keep up w i t h  proposals  
i n  the  f i e l d  a long w i t h  members of  the con t r ac t  group. The 
present  organizat ion i s  as given i n  Figure 1. 

We r e l y  on D r .  Sper l ing  f o r  a l l  Spec ia l  Per turba t ion  
Theory, decks, and advice.  Mr. W. B. Tucker, w i t h  one 
mathematician, works w i t h  h i m .  D r .  Schulz-Arenstorff of  
Computation Divis ion is a l s o  r e l i e d  upon f o r  advice.  

We have encouraged d i r e c t  exchange of views and r e s u l t s  
between the var ious con t r ac to r s .  Our only requirement has 
been that w e  be informed by copy of t h e  l e t te rs  and informa- 
t i on  t ransrni t t e d  . 

4 . 
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CONTRACT SUPERVIS ION 
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SPECIALIST 

C, UNC, NLS, (RTN) 

UKY. CE M. Davidson 

N. Braud 
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Theory and Implications 
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Reentry and Direct 
Calculus of Variations 

VAN, AUB, NV, (MHW) R. Silber 

BX, CQ, UR B. Tucker 

CQ, CE, RTN 1. Winch 

FIGURE 1 
(See page 83 f o r  d e f i n i t i o n  of symbols) 
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New u n s o l i c i t e d  b ids  concerning t h i s  con t r ac t  are being 
received very f r equen t ly  now, and c r e a t e  q u i t e  a job of 
evalua t ion .  However, it is attempted t o  keep the  door open 
f o r  a l l  proposals  and c r i t i c i s m s  by t h e  con t r ac to r s  and new 
bidders .  Over-all a c t i o n  may then  be based on the c r i t i c i s m s  
of the con t r ac to r s  and the advice of the s p e c i a l i s t s .  
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